

Bericht | 2023

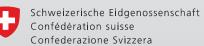
Jahresbericht Critical

Teil Ackerbau - 2023

Autoren

F. Argento, A. Schwarz¹, W. A. Bischoff¹, R. Hug², C. Pünter³, D. Burkhalter⁴, F. Liebisch

Partner


¹Gutachterbüro TerrAquat

²AfU – Kanton Solothurn

³Bildungszentrum Wallierhof – Kanton Solothurn

⁴Inforama – Kanton Bern

«Dieser Bericht wurde mit Unterstützung des BAFU und BLW verfasst»

Confederaziun svizra

Impressum

iiipiessuiii	
Herausgeber	Agroscope
	Reckenholzstrasse 191,
	8046, Zürich
	www.agroscope.ch
Finanzierung	Bundesamt für Umwelt BAFU,
	Bundesamt für Landwirtschaft BLW
Auskünfte	Das Forschungsprojekt CriticalN
	Aktuelle Daten aus Projekt (Kontakte)
Redaktion	F. Argento, F. Liebisch
Gestaltung	Agroscope
Fotos	F. Argento
Titelbild	F. Argento
Download	PDF auf Anfrage erhältlich
Copyright	© Agroscope 2024
Kontakte	nitratprojekt@agroscope.admin.ch
	francesco.argento@agroscope.admin.ch
	frank.liebisch@agroscope.admin.ch
-	

Haftungsausschluss:

Die in dieser Publikation enthaltenen Angaben dienen allein zur Information der Leser/innen. Agroscope ist bemüht, korrekte, aktuelle und vollständige Informationen zur Verfügung zu stellen – übernimmt dafür jedoch keine Gewähr. Wir schliessen jede Haftung für eventuelle Schäden im Zusammenhang mit der Umsetzung der darin enthaltenen Informationen aus. Für die Leser/innen gelten die in der Schweiz gültigen Gesetze und Vorschriften, die aktuelle Rechtsprechung ist anwendbar.

Inhalt

Inha	alt	3
Vorv	wort	4
Zusa	ammenfassung	4
1	Einführung	5
1.1	Die Problematik in Kürze	5
1.2	Das Nitratprojekt und CriticalN	5
2	Methoden im Projekt	7
2.1	Düngungsmethoden	7
2.2	Versuchsdesign und Datenerhebung	9
2.3	Evaluationsindikatoren	10
3	Stand der Forschungsarbeiten des Projekts	12
3.1	Betriebsnetzwerk Ackerbau 2022	12
3.2	Betriebsnetzwerk Ackerbau 2023	14
4	Ergebnisse - 2022	16
4.1	Feldsaison 2022	16
5	Ergebnisse - 2023	23
5.1	Feldsaison 2023	23
6	Literaturverzeichnis	31
7	Anhang	32
7.1	Preisliste für Düngung bei Landor im Dezember 2022.	32
7.2	Grundwasserstand im Gäu (Kestenholz) im 2022	33
7.3	Korrigierte N _{min} Werte mit Faktor x2 und berechnete Empfehlungen	34
7.4	Tabelle 8/9 - GRUD 2017	34

Vorwort

Der folgende Bericht ist als iterativer Bericht für die gesamte Dauer des Projekts gedacht. Konkret bedeutet das, dass der Bericht jedes Jahr mit den neuen Daten und dem Stand des Projekts ergänzt wird, während bestimmte Teile, wie die Einleitung und die Methoden, im Wesentlichen gleichbleiben. Auf diese Weise werden die Leserinnen und Leser regelmässig mit neuen Informationen versorgt und am Ende ist die Projektentwicklung gut nachvollziehbar.

Zusammenfassung

Die Region zwischen Niederbipp, Oensingen und Olten gehört zu den wichtigsten Trinkwasserressourcen im Kanton Solothurn. Gleichzeitig gehört der Talboden dieser Region auch zu den wichtigsten Acker- und Gemüsebaugebieten im Kanton. Aufgrund der intensiven landwirtschaftlichen Nutzung und der ungünstigen hydrogeologischen Gegebenheiten ist das Grundwasser in dieser Region übermässig mit Nitrat belastet, sodass das Qualitätsziel der eidg. Gewässerschutzverordnung (GSchV) für Grundwasser von 25 mg Nitrat Liter⁻¹ vielerorts nicht eingehalten wird (Quelle: AfU SO, 2022). Seit dem Jahr 2000 wird deshalb das schweizweit grösste Nitratprojekt umgesetzt. Mit geeigneten und breit abgestützten Massnahmen sollen die Nitratwerte dauerhaft unter das gesetzliche Qualitätsziel für Grundwasser von 25 mg Nitrat Liter⁻¹ gesenkt werden.

Das Nitratprojekt Niederbipp-Gäu-Olten wird in der vierten Projektperiode vom Forschungsprojekt CriticalN wissenschaftlich begleitet. Das Wirkungsziel ist, durch angepasste Massnahmen die durchschnittlichen N-Verluste ins Grundwasser aus landwirtschaftlich genutzten Flächen unter 30 kg N ha⁻¹ zu halten.

Agroscope und TerrAquat haben zusammen mit den Beratern des Kantons Solothurn (Bildungszentrum Wallierhof) und des Kantons Bern (Bildungszentrum Inforama) sowie dem Amt für Umwelt des Kantons Solothurn ein Betriebsnetzwerk aufgebaut. Im Jahr 2022 nahmen neun Betriebe an dem Projekt teil. So standen 20 Parzellen mit 6 verschiedenen Kulturen im Versuch. Im Jahr 2023 nahmen 16 Betriebe an dem Projekt teil. So standen 32 Parzellen mit 7 verschiedenen Kulturen im Versuch, hauptsächlich Winterweizen und Silo- und Körner Mais (62%), aber auch Raps, Gerste, Dinkel, Zuckerrüben und Kunstwiese.

Gemäss den «Grundlagen der Düngung für Ackerkulturen» (GRUD 2017) werden in der Schweiz, neben den GRUD-Normen der einzelnen Kulturen, zwei Methoden zur Berechnung einer angepassten N-Düngermenge verwendet: (i) die N_{min}-Methode, (ii) die Methode der korrigierten Normen. Die Methoden werden in drei Arten von Feldanwendungen von geringem bis hohem Bedarf an Begleitung getestet. Wenn möglich ist eine Nullparzelle ohne Düngung im Feld angelegt, was der Kontrolle und Einschätzung der N-Nachlieferung dient.

Die Daten aus den Saisons 2022 und 2023 liegen vor. Zusammenfassend lässt sich sagen, dass die auf dem Demoversuchen sowie in zehn Streifenversuchen durchgeführten Versuche zeigen, dass sich die angepassten Varianten positiv auswirkten und potenzielle Verluste verringerten, ohne Ertrag und Rentabilität zu reduzierem. Am Ende der nächsten Saison, wenn die Daten von drei Jahren vorliegen, wird eine umfassendere Analyse und Zusammenfassung in diesen Bericht aufgenommen werden.

1 Einführung

1.1 Die Problematik in Kürze

Die Grundwasserleiter der Region zwischen Niederbipp, Oensingen und Olten gehört zu den wichtigsten Trinkwasserressourcen im Kanton Solothurn. Gleichzeitig gehört der Talboden dieser Region auch zu den wichtigsten Acker- und Gemüsebaugebieten im Kanton.

Stickstoff, der hauptsächlich durch Düngung zugeführt wird, kann in Form von Nitrat ins Grundwasser ausgewaschen werden. Aufgrund der intensiven landwirtschaftlichen Nutzung und der ungünstigen hydrogeologischen Gegebenheiten ist das Grundwasser in dieser Region übermässig mit Nitrat belastet, sodass das Qualitätsziel der eidg. Gewässerschutzverordnung (GSchV) für Grundwasser von 25 mg Nitrat Liter⁻¹ vielerorts nicht eingehalten wird (Quelle: AfU SO, 2022).

1.2 Das Nitratprojekt und CriticalN

Seit dem Jahr 2000 wird deshalb das schweizweit grösste Nitratprojekt umgesetzt. Mit geeigneten und breit abgestützten Massnahmen sollen die Nitratwerte im Grundwasser, das als Trinkwasser genutzt wird oder dafür vorgesehen ist, dauerhaft auf die gesetzliche Anforderung von 25 mg Nitrat Liter⁻¹ gemäss GSchV gesenkt werden. Gleichzeitig soll die landwirtschaftliche Produktion erhalten und das Einkommen der Landwirtinnen und Landwirte gesichert werden. Für Nachteile, welche durch die getroffenen Massnahmen entstehen, werden die Landwirtinnen und Landwirte entschädigt.

Dank diesen Anstrengungen sind die Nitratwerte im Grundwasser nicht weiter angestiegen und weisen teilweise bereits rückläufige Trends auf. Sie liegen aber noch immer über 25 mg Nitrat Liter⁻¹. Der Grenzwert nach der TBDV für Trinkwasser von 40 mg Nitrat Liter⁻¹ wurde dank der Zusammenarbeit mit den Landwirtinnen und Landwirten aber in keiner der Trinkwasserfassungen jemals überschritten. (Quelle: AfU SO, 2022).

1.2.1 Die früheren Projektperioden 1.-3. 2000-2021

Die Massnahmen beschränkten sich auf den Ackerbau, da dieser den grössten Flächenanteil aufweist. Die Massnahmen bestanden aus der Stilllegung von produktivem Ackerland und nitratarmen Ackerbau nach den Vorgaben des Nitratindexes (Fruchtfolge, Winterbegrünung, Bodenbearbeitung und Saatzeitpunkt im Spätsommer/Herbst). Mit Ausnahme eines Düngeverbotsfensters im Winter wurde die Düngung aber nicht als eigentliche Massnahmen einbezogen. (Quelle: AfU SO, 2022).

1.2.2 Das Forschungsprojekt NitroGäu 2017-2021

Die Untersuchungen dieses Forschungsprojekts zeigen, dass im Ausbringungsjahr von Hof- und Mineraldünger der von Pflanzen nicht aufgenommene Stickstoff hauptsächlich in der organischen Bodensubstanz eingebaut und gespeichert wird. Ein Teil dieses in der organischen Bodensubstanz gespeicherten Stickstoffs wird in den Folgejahren wieder in pflanzenverfügbares Nitrat umgewandelt (mineralisiert).

Der grosse Stickstoffvorrat im Boden und die spätere Nachlieferung von Nitrat aus diesem Bodenreservoir wurde bis anhin nicht für die Düngung berücksichtigt. Aus dieser Erkenntnis wurde abgeleitet, dass zur Zielerreichung prioritär eine standortangepasste Düngung erforderlich ist, welche die Nitratnachlieferung aus dem Bodenreservoir, die Nachlieferung aus Hofdüngern bzw. organischen Düngern selbst und die Vorfrucht künftig adäquat berücksichtigt. (Quelle: AfU SO, 2022; Frick, 2022).

1.2.3 Die aktuelle 4. Projektperiode 2022-2026 «Nitratprojekt NGO»

Die hydrogeologischen Untersuchungen und das Forschungsprojekt NitroGäu zeigten, dass die bisherigen Massnahmen nicht ausreichen, um das Qualitätsziel im Grundwasser dauerhaft zu erreichen. Deshalb setzt das Nitratprojekt in der vierten Projektperiode betriebsindividuelle Lösungen und Massnahmen um, deren Wirkung auf Felddaten und einer datenbasierten Beratung beruhen. Zusätzlich zur Stilllegung und zum Nitratindex im Ackerbau werden in der 4. Projektperiode folgende Massnahmen umgesetzt. Die Neuerungen der vierten Phase sind:

- **Erweiterung Niederbipp**: Nitratprojekt NGO (Niederbipp Gäu Olten). Der Kanton Bern ist durch die Erweiterung des Projektperimeters nun Teil der Projektträgerschaft und -umsetzung.
- **Einführung von spezifischen Massnahmen im Gemüsebau**: Erstmals in der Schweiz werden Gemüsebau-Flächen in ein Nitratprojekt eingebunden.
- Neue Massnahmen Ackerbau: Der im Boden bereits pflanzenverfügbare Stickstoff wird beim Ausbringen von Dünger besser berücksichtigt (N_{min}-Methode oder Methode der korrigierten Norm).

1.2.4 Das Begleitprojekt CriticalN (2022-2026)

Das Nitratprojekt Niederbipp-Gäu-Olten wird in der vierten Projektperiode vom Forschungsprojekt CriticalN wissenschaftlich begleitet. Ziel ist es, die Stickstoff- Überschüsse auf der Ebene Parzelle in der Düngung zu senken. Der Weg dahin ist, die Stickstoff-Effizienz durch angepasste Stickstoff-Düngung zu steigern. Dies ist - auf dem Hintergrund steigender Düngerpreise und knapper werdender Ressourcen – auch im Sinne der Landwirte und Landwirtinnen. Konkret soll das erreicht werden durch:

- Regionaler Forschungsansatz: Versuche und Untersuchungen gemeinsam mit den Landwirtinnen und Landwirten und auf den Flächen ihrer Betriebe im Projektgebiet.
- **Ermittlung und Bewertung der Stickstoff-Effizienz**: Messungen zur Stickstoff-Bilanzierung für wichtige Kulturen und Fruchtfolgen.
- **Dialog**: Verbesserungsvorschläge von Landwirtinnen und Landwirten können erprobt und mit Messungen bewertet werden.
- Regionale Datenauswertung: Wie weit ist die aktuelle Praxis auf dem Weg zum dauerhaften Grundwasserschutz? (Aktuelle N-Überschüsse vs. Ziel)

Das Gutachterbüro TerrAquat in D-Nürtingen (Projektleitung) ist für den Teil Gemüsebau zuständig. Agroscope Gruppe Gewässerschutz und Stoffflüsse ist für den Teil Ackerbau zuständig (Abb. 1). Das Forschungsteam arbeitet eng zusammen mit dem Amt für Umwelt Kanton Solothurn und den landwirtschaftlichen Beratungszentren Wallierhof (Solothurn) und Inforama (Bern).

Das Wirkungsziel ist durch angepasste Massnahmen den durchschnittlichen **N-Verlust ins Grundwasser** aus landwirtschaftlich genutzten Flächen unter **maximal 30 kg N ha**⁻¹ **pro Jahr** zu halten.

Abbildung 1: Das CriticalN Kernteam. (Links bis Recht) Frank Liebisch (Agroscope), Wolf Bischoff (TerrAquat, Projektleiter), David Williams (TerrAquat), Andreas Schwarz (TerrAquat), Francesco Argento (Agroscope). Hier auf einer gemeinsamen Unterbodenkartierung in der Region Oensingen zur Eignungsbewertung von Versuchsflächen für das Demoexperiment.

2 Methoden im Projekt

Die Begleitung des Nitratprojekts erfolgt durch Besprechungen, Empfehlungen für Düngungsmethoden sowie die Erhebung und Analyse von Boden- und Pflanzendaten. Innerhalb des Begleitungsprojekts werden ergänzend folgende Methoden eingesetzt:

- Kontakte mit Landwirtinnen und Landwirten um Parzellen zu suchen und über Düngungsstrategien zu diskutieren.
- Düngungsempfehlungen nach standortangepasster Düngepraxis.
- Verteilte repräsentative und wiederholte Erhebungen von Ertrag, N-Entzug und Erntequalität
- Messung der N-Verluste in das Grundwasser als Massstab für die Effizienz der Massnahmen und zur Schliessung der Feld-N-Bilanzen.
- Messung von potentiellen Düngeüberschüssen mit Hilfe von Nulldüngefenstern zur Erweiterung der Datengrundlage in der Fläche.
- Betriebsgespräche mit den beteiligten Landwirtinnen und Landwirte zur Umsetzbarkeit der Massnahmen und um Fragen und Ideen zur Verbesserung zu sammeln.
- Düngeplanung und Betriebsbilanzen regional einordnen und diskutieren.

2.1 Düngungsmethoden

Gemäss den «Grundlagen der Düngung für Ackerkulturen» (GRUD 2017, Kapitel 8, Sinaj & Richner, 2017) in der Schweiz werden zwei Methoden zur Berechnung der angepasster N-Düngermenge verwendet: (i) die N_{min}-Methode, (ii) die Methode der korrigierten Normen. In einer Studie von 2015 (Maltas et al. 2015) wurde gezeigt, dass nach beiden Methoden eine N-Düngermenge empfohlen wird, die nahe an der optimalen Menge liegt. Beide Methoden werden derzeit nicht standardmässig angewendet, auch weil das Wissen und das Vertrauen in diese Methoden in den Betrieben noch nicht vorhanden ist. Zudem werden sie vom ÖLN nicht gefordert. Zeitpunkt und Aufteilung der Düngergaben sind auch wichtig und Hinweise befinden sich auf die Tabelle 26, Seite 8/35 der GRUD. Einige kürzlich in der Schweiz durchgeführte Studien zeigten ebenfalls das Potenzial standortangepasster Methoden zur Optimierung der Stickstoffdüngung (Argento et al. 2022, Grossrieder et al. 2022) und Reduktion der N-Überschüsse.

2.1.1 Düngung nach GRUD Norm und Betriebsstandard

In der GRUD entsprechen die N-Düngungsnormen dem Sickstoffbedarf der Ackerkulturen, um einen schweizweiten durchschnittlichen Ertrag zu erreichen. Die heutige Standardpraxis orientiert sich an diesen Werten und ist für ÖLN-Anforderungen in der Regel ausreichend. Diese N-Düngungsnormen werden in Abhängigkeit verschiedener Faktoren bezüglich der Pflanzen, des Bodens und/oder des Klimas korrigiert. Die N-Entzüge für die wichtigste in der Schweiz angebaute Ackerkulturen sowie die entsprechenden Düngungsnormen sind in Tabelle 9 in Kapitel 8 (Anhang 7.4) der GRUD 2017 aufgeführt. Die Erträge und die Werte der N-Gehalte stammen aus zahlreichen Versuchen, die von Agroscope durchgeführt wurden. Im Projekt wird die Norm als Kontrollvariante verwendet oder alternativ die betriebsübliche Düngung eingesetzt. Diese Betriebsnorm spiegelt die übliche Praxis im Betrieb wider, die auf Erfahrung beruht und darauf ausgerichtet ist, den Nährstoffbedarf der Pflanzen gemäss den Anforderungen und Vorgaben der ÖLN zu decken.

2.1.2 Düngung nach N_{min}

Diese Methode zur Berechnung der erforderlichen N-Menge beruht auf der Messung des mineralischen N im Boden. Die N_{min} -Bestimmung berücksichtigt das in verschiedenen Bodenschichten (0-90 cm) enthaltene N in Form von Nitrat- $(N-NO_3)$ und Ammonium-Stickstoff $(N-NH_4)$ (Abb. 2). Diese

werden unter Berücksichtigung der Steingehalte und Bodendichte in N_{min} umgerechnet nach der Agroscope Referenzmethode (Bürge und Agroscope, 2020). Der Vorteil gegenüber einem festen Wert wie der Norm, ist, dass N_{min} im Boden gemessen werden kann. Die zu düngende N-Menge wird durch einen Referenzwert für jede Kultur berechnet. Die Nachteile sind die Kosten und der Aufwand für die Beprobung und Analyse.

Abbildung 2: Mechanische N_{min}-Probenahme. Pro Feld oder Sektor werden 12-15 Einstiche auf der Fläche in drei Horizonten (0-30 cm, 30-60 cm, 60-90 cm) vorgenommen. Probenahme am 25.02.2022 durch Sven Schönmann (Briner AG), Probenehmer im Nitratprojekt.

Im Rahmen des Projekts wurde ein Arbeitsablauf eingerichtet, um sicherzustellen, dass von der Bestellung der Proben bis zur Düngeempfehlung max. 72 Stunden vergehen (Abb. 3). Die Proben werden von einem "Probenehmer" gesammelt und gleichentags an ein Labor in der Region geliefert.

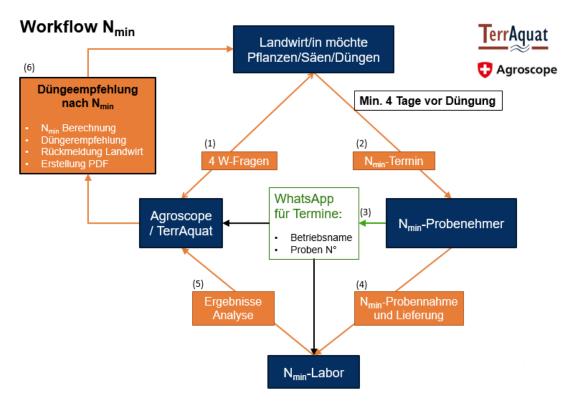


Abbildung 3: N_{min} Arbeitslauf im Projekt im Ackerbau. (1) Die Landwirtinnen und Landwirten nehmen Kontakt mit den Projektpartnern (Agroscope oder TerrAquat) auf, um die vier W-Fragen zu besprechen: was, wo, wann, wie viel. (2) Min. 4 Tage vor der Düngung ist die Probenahme beim Probenehmer in Auftrag gegeben, der mit Partnern und Labor die Probennahme per WhatsApp meldet. (4) Die Proben werden gesammelt und im Labor abgegeben. (5) Die Analysen werden an die Projektpartner weitergeleitet, eine Dünge-Empfehlung wird berechnet und (6) an den Landwirt*innen zurückgemeldet.

2.1.3 Düngung nach korrigierter Norm

Die Methode der korrigierten Normen schätzt die erforderliche N-Düngermenge, wobei eine Referenzmenge aufgrund von Boden-, Klima- und Anbaubedingungen des Standorts korrigiert wird (Abb. 4). Dabei kommen sieben mögliche Korrekturfaktoren, die negative oder positive Werte annehmen können, zur Anwendung:

$$X = Norm + (f_{Ertrag} + f_{OSB} + f_{VF} + f_{NOD} + f_{Regen} + f_{Hacken} + f_{Fr})$$

Der Faktor Ertrag (fErtrag) schätzt die Korrektur des N-Bedarfs, wenn ein höherer oder tieferer Ertrag im Vergleich zum Referenzertrag angestrebt wird (höhere Ertrag in 62a Gebieten nicht zulässig, Suisse-Bilanz Seite 4-5, Punkt 2.17). Der Faktor fOSB berücksichtigt die Auswirkungen des Gehalts an Organische Substanz (OS) und des Tongehalts des Bodens auf die Mineralisierung der OS, fVF berücksichtigt den Einfluss der Vorfrucht und des Zeitpunkts ihrer Einarbeitung in den Boden auf die Mineralisierung der Ernterückstände, fNOD bezeichnet den Anteil des mit organischen Düngern ausgebrachten N, der im zweiten Jahr nach der Ausbringung pflanzenverfügbar ist, fRegen schätzt den Einfluss von Regen auf die N-Verluste durch Auswaschung während Winter und Frühling, fHacken simuliert den positiven Effekt von wiederholtem Hacken auf die Mineralisierung der OS und fFr berücksichtigt, die Auswirkungen der Bedingungen im Frühling (Feuchtigkeit und Temperatur) auf die N-Verfügbarkeit.

Der Vorteil von dieser Methode ist, dass sie keine Analysenkosten verursacht und viele wichtige Anbauund Umweltfaktoren einbezieht. Der Nachteil ist, dass die Berechnung nicht selbsterklärend ist und relative mehr Zeit für die Sammlung der Daten und der Korrekturfaktoren in verschiedene Tabellen benötigt. Dieser Aufwand ist aber als gering einzustufen und kann durch digitale Tools vereinfacht werden.

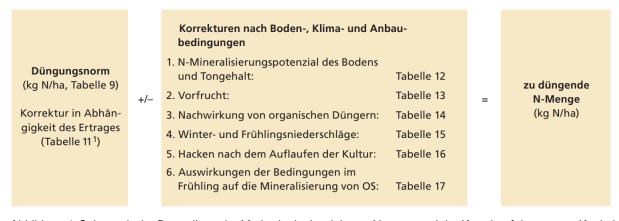


Abbildung 4: Schematische Darstellung der Methode der korrigierten Normen und der Korrekturfaktoren aus Kapitel 8/24 der GRUD 2017 (Sinaj & Richner, 2017).

2.2 Versuchsdesign und Datenerhebung

Die Varianten werden in drei Arten von Feldversuchen in der Reihenfolge von geringem bis hohem Bedarf an fachlicher Begleitung getestet. Wenn möglich ist eine Nullparzelle ohne Düngung, zur Kontrolle und Einschätzung der N-Nachlieferung, im Feld angelegt. Im Einzelfeld testen Betriebe eine Variante auf ihrem Feld (mit oder ohne Nullparzelle). In einem direkten Vergleich wird eine Variante mit der Norm oder dem Betriebsstandard getestet (mit oder ohne Nullparzelle). Im Demoversuch werden alle Methoden auf einer Parzelle getestet und mit einer Nullparzelle verglichen. Sowohl in der Forschung als auch in der Umsetzung können bei Handlungsbedarf experimentelles Design und Massnahmen angepasst werden (Abb. 5).



Abbildung 5: Überblick über die drei Möglichkeiten für landwirtschaftliche Versuchsfelder in CriticalN: das Einzelfeld, der direkte Vergleich oder der Demoversuch.

Die Daten der Betriebe und Felder werden von der Beratung und Agroscope zusammengetragen. Die Feldkalender liefern die Bewirtschaftungsdaten, die Suisse-Bilanz allenfalls Betriebskenngrössen. Die gemessenen Parameter über die Saison sind:

- N_{min}: Düngeberatung und Teil der Erforschung der N-Dynamik bei unterschiedlicher Landnutzung und Standortsverhältnissen
- Ertrag: Vergleich der Verfahren (Körner und Stroh) und Erkennen allfälliger Ertragseinbussen
- N-Aufnahme: Berechnung der Stickstoff-Nutzungseffizienz
- Qualität: Proteingehalt (Getreide), Qualitätssicherung, andere Parameter für andere Kulturen
- NO₃- Auswaschung (Demoversuch): Messung der Nitratauswaschung ins Grundwasser mit Selbst-Integrierenden Akkumulatoren (SIA)

2.3 Evaluationsindikatoren

Die zunächst isolierten Daten aus Umsetzung und Forschung werden zu lokalen N-Bilanzdatensätzen verbunden, die Auskunft über Effizienz, Verbesserungen und Probleme der vorangegangenen Messperioden geben. Die Bewertung wird durch Ertrag und Qualität, N-Nutzungseffizienz (scheinbare Ausnutzungseffizienz und Körner-Produktionseffizienz), N-Speicheränderung und N-Verlustpotential (N-Bilanzmethode) vollzogen. Die Nullparzellen (Abb. 6) sind als Kontrolle und zum Verständnis der N-Nachlieferung des Bodens sehr wichtig. Sie werden auch zur Berechnung der Indikatoren für Effizienz und N-Bilanz verwendet.

Abbildung 6: Nullparzellen in Weizen- und Gerstenfeldern. Mitte April war der Unterschied zu den gedüngten Parzellen deutlich sichtbar.

Die Tabelle 1 gibt einen Überblick über die verschiedenen Indikatoren für die Effizienz des Stickstoffeinsatzes und der Körnerproduktion, sowie der Umweltverträglichkeit und der Wirtschaftlichkeit. Die Formeln werden angegeben, um zu verdeutlichen, welche Parameter aus den Felddaten für die Berechnung verwendet werden.

Tabelle 2.1: Indikatoren für die Effizienz des Stickstoffeinsatzes und der Körnerproduktion, die Umweltverträglichkeit und die Wirtschaftlichkeit mit Abkürzungen und Formel.

Indikator		Formel
Scheinbare Ausnutzungseffizienz	SAE	$\frac{(\textit{N Ab D} \ddot{\textbf{u}} \textit{ng} - \textit{N Ab Null})}{\textit{N D} \ddot{\textbf{u}} \textit{ng}} * 100$
Produktionseffizienz	PE	Ertrag N Düng
N Saldo*	-	N Düng — N Ab — N Auswaschung
N Verlustpotential	-	N D ü $ng+N$ N $achlieferung-N$ $Ab+N$ min $Ernte$
Saldo	-	Kp∗Ertrag − Np ∗ N Düngung

^{*} N Auswaschung, wenn verfügbar.

N Ab = N Abfuhr: Gesamte Feldabfuhr Körner (+ Stroh, falls abgefahren)

 K_p ; N_p = Körnerpreis und Stickstoffpreis respektive.

 N_{min} Ernte = N_{min} im Boden zum Zeitpunkt der Ernte

3 Stand der Forschungsarbeiten des Projekts

3.1 Betriebsnetzwerk Ackerbau 2022

Agroscope hat im laufenden Jahr angefangen, zusammen mit den Beratern des Kantons Solothurn (Bildungszentrum Wallierhof) und des Kantons Bern (Bildungszentrum Inforama) sowie dem Amt für Umwelt des Kantons Solothurn, ein Betriebsnetzwerk aufzubauen (Abb. 7). Im Rahmen dieses Netzwerks werden gemeinsam mit den Landwirtinnen und Landwirte der Region verschiedene Methoden zur Optimierung der Stickstoffdüngung "on-farm" getestet. Die Betriebsdaten werden gesammelt und für die Auswertung der verschiedenen Methoden verwendet.

Abbildung 7: Projekt Perimeter vom Nitratprojekt NGO (Niederbipp–Gäu–Olten). Die Fläche der beiden Kantone: Kanton Solothurn (orange) und Kanton Bern (rot), sowie die Versuchsflächen (gelbe Polygone) sind dargestellt.

Im Jahr 2022 nahmen neun Betriebe an dem Begleitungsprojekt CriticalN teil. So standen 20 Parzellen mit 6 verschiedenen Kulturen im Versuch, hauptsächlich Winterweizen und Mais (60%), aber auch Raps, Gerste, Zuckerrüben und Kunstwiese (Abb. 8, Kulturen). Insgesamt wurden rund 40 ha Ackerland untersucht. Die Parzellen wurden mit drei verschiedenen Düngeverfahren nach «Grundlagen der Düngung für Ackerkulturen» (GRUD 2017, Kapitel 8, Sinaj & Richner, 2017) gedüngt, die meisten davon mit der N_{min}-Methode mit 32.4 ha (Details in Abschnitt 2 Methoden im Projekt). Die Methode der korrigierten Norm wurde auf rund 3.8 ha angewendet, der Rest der Flächen waren Kontrollflächen (nach GRUD Norm oder Betriebsstandard) (Abb. 8, Düngungsmethode). Agroscope lieferte die Empfehlungen für die Landwirte und 4 Parzellen mit insgesamt 6 ha wurden enger begleitet.

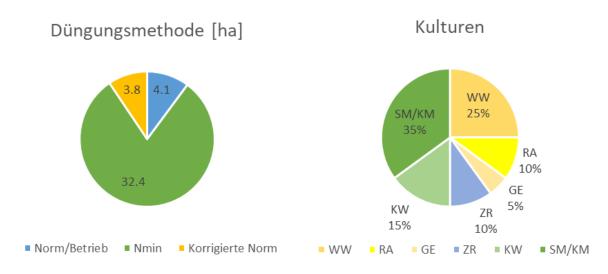


Abbildung 8: Übersicht über die 2022 untersuchten Parzellen im Projekt. Auf der linken Seite sind die drei Düngeverfahren pro Flächeneinheit (ha) dargestellt. Rechts zeigen die Diagramme die sechs verschiedenen Kulturen, die in diesem Jahr untersucht wurden (% der Parzellen): Winterweizen (WW), Silo- und Körnermais (SM/KM), Raps (RA), Gerste (GE), Zuckerrüben (ZR) und Kunstwiese (KW).

Das Jahr 2022 war das erste operative Jahr mit Feldexperimenten des Ackerbauteils im Projekt, und das Ziel bestand darin, laufende Arbeitsabläufe mit dem Netzwerk der Landwirte und allen anderen beteiligten Akteuren zu etablieren. Für das Jahr 2023 wurde das Ziel verfolgt, weitere Betriebe und Flächen in das Projekt einzubeziehen und die Beprobung und Arbeitsabläufe zu verbessern.

3.1.1 Stand und Herausforderungen - 2022

Die Feldexperimente im Jahr 2022 waren notwendig und wichtig, um die Abläufe des Projekts zu entwickeln und zu etablieren, wie zum Beispiel den Austausch zwischen den Projektpartnern und die Kommunikation mit den Landwirtinnen und Landwirten. Während der Austausch innerhalb des Projektteams in Form eines zweiwöchentlichen "Jour-Fix" und bilateraler Kommunikation bei Bedarf gut organisiert ist, gestaltete sich die Kommunikation mit den Landwirtinnen und Landwirten und vor allem die Rekrutierung von Teilnehmern zu den wissenschaftlichen Fragestellungen teilweise schwierig. Die Kontaktaufnahme mit neuen Landwirtinnen und Landwirten ist ein zentrales Element des Projektes und sehr wichtig für die Aussagekraft der erhobenen Daten und damit für den Erfolg des Projektes. Allerdings ist das Projekt für die Landwirte nicht immer attraktiv. Es wird gemeinsam mit der Projektleitung und den Partnern nach Lösungen gesucht. Der Wallierhof hat das Personal für 2023 bereits verstärkt.

Erwähnenswert ist auch, dass bei einem Vergleich mit verschiedenen Labors in der Schweiz und in Deutschland ein systematischer Fehler bei der N_{min}-Messung im Labor festgestellt wurde. Die Analysenergebnisse des Labors im Nitratprojekt lagen im Durchschnitt zwischen 50 und 60% unter denen anderer Labore. Das Labor wurde von der Projektleitung darauf angesprochen und hat bereits Massnahmen ergriffen, um die Analysemethode zu verbessern und einen höheren Qualitätsnachweis durch Ringvergleiche mit anderen Labors im kommenden Jahr zu gewährleisten.

3.2 Betriebsnetzwerk Ackerbau 2023

Im Jahr 2023 nahmen 16 Betriebe an dem Projekt teil. So standen 32 Parzellen mit 7 verschiedenen Kulturen im Versuch, hauptsächlich Winterweizen und Silo- und Körnermais (62%), aber auch Raps, Gerste, Dinkel, Zuckerrüben und Kunstwiese (Abb. 9, Kulturen). Insgesamt wurden rund 58 ha Ackerland untersucht was ca. 6% der ausgewiesenen Ackerfläche im Projektperimeter entspricht. Die Parzellen wurden mit drei verschiedenen Düngeverfahren nach «Grundlagen der Düngung für Ackerkulturen» (GRUD 2017, Kapitel 8, Sinaj & Richner, 2017) gedüngt, die meisten davon mit der N_{min}-Methode mit rund 49 ha. Die Methode der korrigierten Norm wurde auf rund 7 ha angewendet, der Rest der Flächen waren Kontrollflächen (nach GRUD Norm oder Betriebsstandard) (Abb. 9, Düngungsmethode). Agroscope lieferte die Düngeempfehlungen und 5 Parzellen mit insgesamt 9.4 ha wurden enger begleitet.

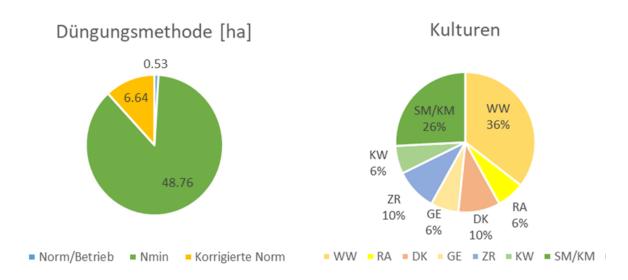


Abbildung 9: Übersicht über die 2023 untersuchten Parzellen im Projekt. Auf der linken Seite sind die drei Düngeverfahren N_{min} (48.76 ha), Korrigierte Norm (6.64 ha) und Kontrollflächen (Norm/Betrieb, 0.53 ha) pro Flächeneinheit dargestellt. Rechts zeigen die Diagramme die sechs verschiedenen Kulturen, die in diesem Jahr untersucht wurden (% der Parzellen): Winterweizen (WW), Silo- und Körnermais (SM/KM), Raps (RA), Dinkel. (DK), Gerste (GE), Zuckerrüben (ZR) und Kunstwiese (KW).

3.2.1 Stand und Herausforderungen - 2023

Das Jahr 2023 war insgesamt ein positives Jahr für das Projekt. Was die Herausforderungen des Jahres 2022 anbelangt, so wurden die Qualitätsprobleme der N_{min} -Analyse vom Labor verbessert, indem die Methoden angepasst, ein Vergleich der Analysen mit einem externen Labor in Deutschland organisiert und eine Veranstaltung mit den Landwirtinnen und Landwirten durchgeführt wurde, um die Transparenz der Prozess von Beprobung bis N_{min} Wert zu erhöhen. Die Methoden und der Ablauf wurden vorgestellt und erläutert.

Die Unterstützung durch die Berater war während der Saison sehr gut. Ein «Highlight» dieses Jahres war der N_{min}-Workshop im September auf dem Wallierhof, bei dem ein Excel-Tool für N_{min}-basierte Düngeempfehlungen vorgestellt wurde. Dieses Tool wurde von Agroscope und TerrAquat entwickelt und wird in einem separaten Bericht vorgestellt und erläutert, der in 2024 erhältlich sein wird. Ziel des Tools ist es, die Berechnung der N_{min}-basierten Düngerempfehlungen für die Berater zu vereinfachen und zu automatisieren (ähnlich wie der korrigierte Norm Prozess) - die ab 2024 beginnen werden den Düngeempfehlungsprozess zu übernehmen, aber weiterhin durch Agroscope unterstützt wird.

Eine der grossen Herausforderungen im Projekt ist die Modellierung der N-Nachlieferung durch Mineralisierung während der Vegetationsperiode. Zu diesem Zweck hat das CriticalN-Team ein gemeinsames Experiment mit Feldlysimetern am Versuchsstandort in Oensingen etabliert, um die N-Freisetzung von acker- und gemüsebaulich genutzten Böden im Gäu besser zu verstehen. Der

Versuchsaufbau, die Methode und die Daten werden zu einem späteren Zeitpunkt vorgestellt, da die Auswertung noch nicht abgeschlossen ist. Die heftigen Niederschläge im Herbst haben dazu geführt, dass das Experiment mit Wasser überflutet wurde. Der Versuch wird nun abgebaut. Zusätzlich wurde eine Porbenhamekampagne zur Messung von organischem Kohlenstoff und Gesamtstickstoff in verschiedenen repräsentativen Böden durchgeführt. Diese Daten sollten dazu dienen, das Verständnis des N-Mineralisierungspotenzials zu verbessern.

Abbildung 10: Installation von Feldlysimetern in Oensingen im Mai 2023. Vier verschiedene Böden (zwei aus dem Ackerbau und zwei aus dem Gemüsebau) werden viermal in 25 cm tiefen Lysimeter repliziert.

Schliesslich wurde eine umfangreiche Feldbeprobungskampagne geplant, um die Wirkung des mineralischen Stickstoffs im Boden im Herbst als Indikator für Stickstoffreste nach der Saison zu testen. Leider war diese Kampagne nicht sehr erfolgreich, was zum einen an der nicht optimalen Organisation zwischen den beteiligten Parteien (Agroscope, Labor und Probenehmer), zum anderen an der Dimension der Kampagne (über 60 zu beprobende Standorte) und vor allem an den Feldbedingungen (zwischen Ende Oktober und Dezember extrem intensive und häufige Niederschläge, die das Befahren der Felder mit dem Probenahmefahrzeug nahezu unmöglich machten oder gar verunmöglichten) lag (Abb. 11). Nur 15 Standorte konnten schlussendlich beprobt werden. Die verbliebenen Felder werden zu Beginn des Jahres 2024 beprobt. Aufgrund der starken Auswaschung durch die intensiven Niederschläge können diese N_{min}-Gehalte nicht mehr als Herbst-N_{min}-Gehalt genutzt werden. Sie werden jedoch ein gutes und sehr nützliches Abbild der N_{min}-Basiswerte in der Region geben, um einen regionalen N_{min}-Hintergrundgehalt abschätzen zu können. Dieser wird benötigt, um die Interpretation der Herbst-N_{min}-Werte abzustützen.

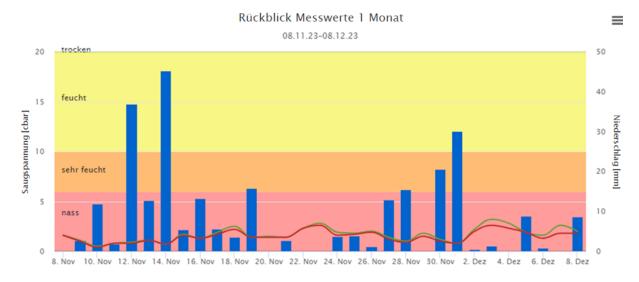


Abbildung 11: Abbildung der Feuchtigkeitsbedingungen im Herbst 2023 (Saugspannung [cbar] und Niederschlag [mm]) in Kestenholz (8. Nov – 8. Dez 2023). Quelle: Bodenmessnetz.ch

4 Ergebnisse - 2022

4.1 Feldsaison 2022

Die Ergebnisse der ersten Feldsaison 2022 liegen fast vollständig vor. Die Sammlung der Feld-Kalenderdaten von den Landwirtinnen und Landwirten ist noch am Laufen, zusammen mit der Beratung. In diesem Bericht sind die vorläufigen Ergebnisse der "Einzelfelder" in Bezug auf die Empfehlung nach N_{min} und Korr. Norm, im Vergleich zur GRUD Norm, dargestellt. Die Streifenversuche und der Demoversuch mit Silomais gezeigt werden mit detaillierte Daten auch gezeigt.

4.1.1 Wetter

Die Wetterbedingungen in der Vegetationsperiode 2022 (Okt-21 bis Okt-22) waren gekennzeichnet durch eine kumulative Niederschlagsmenge von 1064 mm, die leicht über dem regionalen Jahresmittelwert (1170 mm, bodenmessenetz.ch 2011-2022, Kestenholz) lag, und einer durchschnittlichen Lufttemperatur von 11 °C (Abb. 12). Die Niederschläge waren gut über die Saison verteilt, mit Ausnahme des Monats März, der mit nur 20 mm kumulativem Niederschlag der trockenste Monat der Saison war. Im Allgemeinen waren die Bedingungen für die Vegetationsperiode im Durchschnitt gut, ohne dass es zu extremen Ereignissen kam (wie z. B. langanhaltende Dürreperioden wie im Jahr 2020 oder hohe Niederschlagsmengen wie im Sommer 2021).

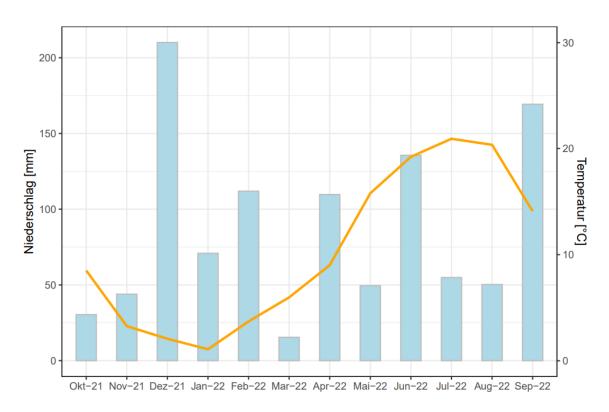


Abbildung 12: Monatliche Niederschlagssumme (mm) und Temperaturmittelwerte (°C) in der Vegetationsperiode 2022 (Okt-21 bis Okt-22) im Gäu. Datenquelle: Wetterstation Kestenholz –<u>Bodenmessnetz (meteotest.ch)</u>.

Der Grundwasserstand inKestenholz schwankte zwischen 428 und 426 m ü. M. mit einem Höchststand im März und einer stetig sinkenden Tendenz gegen Ende des Jahres (Abb. 13).

Abbildung 13: Zeitliche Entwicklung des Grundwasserstandes (m ü. M.) im Jahr 2022 in der Messstelle Kestenholz. Datenquelle: Amt für Umwelt Kt. Solothurn, Hydrometrie - Hydrometrie - Daten - Umweltdaten - Kanton Solothurn.

4.1.2 Allgemeine Darstellung der Düngung und N_{min} für verschiedene Kulturen

Die laufende Saison war durch relativ niedrige N_{min}-Werte charakterisiert auch aufgrund der fehlerhaften Analyseergebnisse (Siehe Sektion 3.2). In Weizenfeldern lagen die Werte im Februar zwischen 25 und 50 kg N ha⁻¹ (Abb. 14, b). Bei Winterweizen war die Abweichung von der Norm (Norm WW ist 140 kg N ha⁻¹) grösser, hier lagen die Empfehlungen 5-30% unter der Norm. Die korrigierten Daten (geschätzt Faktor x2) sind im Annex 7.3 abgebildet. Bei Weizen veränderte sich die korrigierte Empfehlung im Vergleich zu den empfohlenen Mengen (5-40% weniger als die Norm).

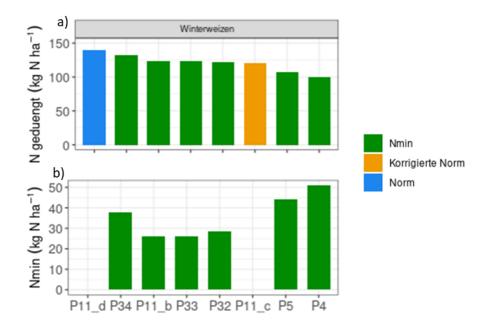


Abbildung 14: Vergleich der Düngeempfehlung (a) nach der N_{min} -Methode, Korrigierte Norm und der Norm/Betrieb in den verschiedenen Parzellen (P1...P_n) für Winterweizen. Der entsprechende N_{min} -Wert ist in der darunterliegenden Grafik (b) dargestellt. Die Farben entsprechen die Düngungsvariante. Die Buchstaben _a, _b, _c, _d bezeichnen verschiedene Varianten in der gleichen Parzelle.

Auf den Feldern mit Mais (2 Silomais und 2 Körnermais) lagen die gemessen N_{min} -Gehalte im Mai zwischen 40 und 80 kg N ha⁻¹ (Abb. 15, b). Die Empfehlungen nach der N_{min} -Methode unterschieden sich daher nicht wesentlich von der Norm (Norm Mais ist 110 kg N ha⁻¹). Die Düngeempfehlungen lagen gleich oder etwa 5-10% niedriger als die Norm. Bei Mais (sowohl Silo als auch Körner) lagen die berichtigten Empfehlungen um ca. 30-60% unter der Norm. Bei der Korr. Norm waren die Düngeempfehlungen zwischen 60 und 100 kg N / ha.

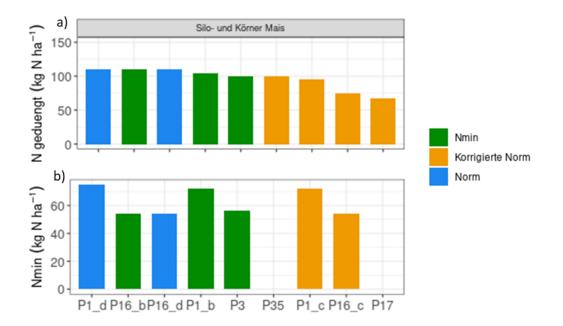


Abbildung 15: Vergleich der Düngeempfehlung (oben) nach der N_{min} -Methode, Korrigierte Norm und der Norm/Betrieb in den verschiedenen Parzellen (P1...P_n) für Silo- und Körnermais. Der entsprechende N_{min} -Wert ist in der darunterliegenden Grafik dargestellt. Die Farben entsprechen der Düngungsvariante. Die Buchstaben _a, _b, _c, _d bezeichnen verschiedene Varianten in der gleichen Parzelle.

Bei Winterraps schliesslich lagen die Empfehlungen ebenfalls um 5-10% niedriger (Daten nicht im Bild dargestellt). Auf diesen Feldern wurde keine direkte Ertragsbewertung vorgenommen, es kam aber auch zu keinen sichtbaren Ertragsunterschieden.

4.1.3 Direkter Vergleich und Demoversuch

Im Jahr 2022 wurden neben dem Haupt-Demoversuch drei weitere Streifenversuche durchgeführt.

Auswertung Streifenversuch Winterweizen

Das Feld, ca. 1.5 ha gross, wurde in 5 Unterparzellen unterteilt: die drei GRUD-Methoden (Norm, N_{min} und Korrigierte Norm), eine Nullparzelle und ein Teil, der betriebsüblich gedüngt wurde (Abb. 16, links). Das Feld wurde mit Brotweizen der Sorte «Montalbano» (Schweiz) am 15.10.2021 gesät und am 18.07.2022 gedroschen. Für die Analyse wurden Handproben vor der Ernte genommen (Abb. 16, rechts).

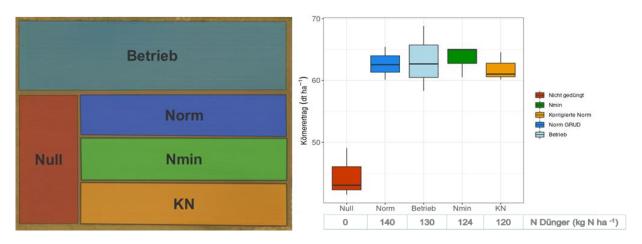


Abbildung 16: Aufbau des Weizenfeldes (links) mit den 5 Parzellen: Norm, Nmin, Korrigierte Norm, Betrieb und Null, und die Ergebnisse der Ertragsanalyse basiert auf Handproben vor der Ernte (dt ha^{-1} , rechts) pro Variante (n = 3). Unter jede Variante ist die entsprechende Menge des ausgebrachten N-Düngers ($kg N ha^{-1}$) angegeben.

Der Düngereinsatz wurde bei der «unkorrigierten» N_{min}- und Korrigierten Norm-Variante um 10 beziehungsweise 15% der Norm für Winterweizen reduziert. Dies ohne einen signifikanten Unterschied im Ertrag zwischen den gedüngten Varianten. Die Nullparzelle war signifikant ertragsärmer, was zu einer Gesamt-N-Aufnahme von 116 kg N ha⁻¹ führte (Tab. 4.1).

Tabelle 4.1: Parameter, die während der Saison und bei der Ernte auf dem Feld erhoben werden: Ausgebrachter N-Dünger, Ertrag, N_{min} , N- Abfuhr und Berechnung des Wirkungsgrads. Die Werte für Output und Effizienz sind als Mittelwert angegeben (n = 3).

Variante	Input	Nn	nin	C	Output	E	ffizienz
	N Düngung	Frühjahr	Ernte	Ertrag	N Abfuhr	SAE	PE
	kg N ha ⁻¹	kg N ha ⁻¹	kg N ha ⁻¹	t ha ⁻¹	kg N ha ⁻¹	%	kg kg N ⁻¹
Null	0	18	57	4.46	116	-	-
N_{min}	124	23	76	6.35	224	81	51
KN	120	15	56	6.19	210	77	52
Norm	140	23	72	6.27	225	85	45
Betrieb	130	23	70	6.33	238	94	45

Dies deutet auf das potenzielle N-Angebot hin, das hauptsächlich aus dem Boden und der atmosphärischen Deposition stammt. Aufgrund des Einsatzes von Mineraldünger (Ammonsalpeter 27% N) in Kombination mit einer guten Saison mit konstanten Niederschlägen und optimalen Temperaturen war die Effizienz in Bezug auf die scheinbare Ausnutzungseffizienz (SAE) bei allen Varianten hoch und lag durchschnittlich im Bereich von 70-90%, was als optimal angesehen wird. Betrachtet man die Produktionseffizienz (PE), so scheinen die Varianten mit reduzierter Düngergabe eine effizientere Kornproduktion pro kg ausgebrachtem N zu haben.

Zur Berechnung des potenziellen N-Verlustes und der Nettoveränderungen des N-Pools auf der Grundlage der N-Düngung und der N- Abfuhr aus dem Feld durch die Pflanzen wurde die in den Methoden beschriebene N-Bilanzmethode verwendet (Tab. 4.2). Das Verlustpotenzial umfasst auch den N_{min} bei der Ernte. Die Werte zeigen, dass das Verlustpotenzial bei der Variante Norm am höchsten war, während es bei den anderen Varianten unter 100 kg N ha⁻¹ lag. Die nicht gedüngte Parzelle hatte wie erwartet das geringste Verlustpotenzial. Die negativen Veränderungen im N-Pool (N Saldo) deuten darauf hin, dass eine Lücke zwischen dem gedüngten und dem vom Feld entnommenen N bestand. Diese Lücke wird durch N-Nachlieferung aus dem Boden geschlossen (Mineralisierung).

Tabelle 4.2: Indikatoren für die ökologische und wirtschaftliche Bewertung. Die Werte sind als Mittelwert angegeben (n = 3).

Variante	Umwelt		Öl	konomie	
	N Verlustpotential	N Saldo	Protein Gehalt	Saldo1*	Saldo2**
	kg N ha ⁻¹	kg N ha ⁻¹	%	CHF ha ⁻¹	CHF ha ⁻¹
Null	57	-116	10.7	2318	2318
N_{min}	92	-100	12.8	3251	2853
KN	82	-90	12.9	3169	2784
Norm	126	-85	13.4	3202	2753
Betrieb	88	-108	13.7	3231	2818

^{*} Körner Erlöse – N Kosten (Durchschnittliche Dünger Preise 2018-2021 = 42.5 CHF 100 kg⁻¹)

Die wirtschaftliche Bewertung erfolgt durch einen relativ einfachen Vergleich des Saldos, der sich aus dem Bruttoertrag abzüglich der Düngemittelkosten errechnet. Zwei verschiedene Saldos mit unterschiedlichen Düngemittelpreisen (Durchschnitt der Preise 2018-2021-Saldo1) und der aktuellen Preise-Saldo2). In beiden Fällen sind die Unterschiede zwischen den Varianten nicht signifikant. Bei den aktuellen Preisen ist der Saldo2 jedoch um 350-450 CHF ha⁻¹ tiefer. Mit höheren Düngerkosten sind die angepassten Varianten leicht mehr profitabel: z.B. ist der Saldo1 der N_{min}-Variante ist 1.6% höher als Saldo1 der Norm und der Saldo2 ist 3.6% höher als Saldo2 der Norm.

Zusammengefasst zeigt der Vergleich, dass sich die angepassten Varianten in diesem Jahr positiv auswirkten und die potenziellen N-Verluste verringerten, ohne den Ertrag und die Wirtschaftlichkeit für den Landwirt zu beeinträchtigen. In diesem Jahr und auf diesem Feld schnitt auch der Betriebsstandard sehr gut ab. Wenn weitere Daten über mehr Felder und Jahre vorliegen, können weitere Schlussfolgerungen gezogen werden.

^{**} Körner Erlöse – N Kosten (Aktuelle Dünger Preise Dezember 2022 = 93.3 CHF 100 kg⁻¹). Sieht Anhang.

Demoversuch Silomais

Das Feld, ca. 3 ha gross (Abb. 17, links), wurde in 4 Unterparzellen unterteilt: die drei GRUD-Methoden (Norm, N_{min} und Korrigierte Norm) und eine Nullparzelle. Zusätzlich wurde ein Teil als Standard vom Betrieb gedüngt. Das Feld wurde mit Silomais am 06.05.2022 gesät und am 18.09.2022 siliert. Für die Analyse wurden Handproben vor der Ernte genommen (Abb. 17, rechts).

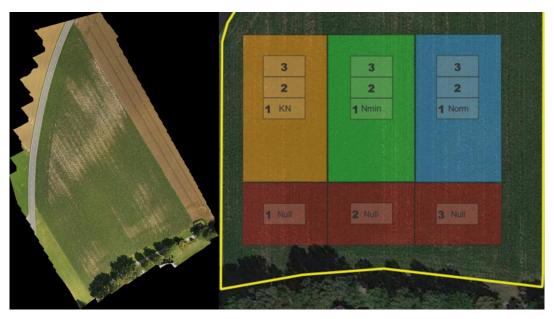


Abbildung 17: Luftbild von Demoversuch (links) mit den 4 Parzellen: Norm, N_{min} , Korrigierte Norm, und Null (rechts). Die kleinen Polygone entsprechen den Teilflächen, auf denen die Biomasseproben entnommen und die Auswaschung gemessen wurde.

Der Düngereinsatz wurde bei der N_{min}- und Korrigierten Norm-Variante um 5 beziehungsweise 12% der Norm für Mais reduziert, ohne einen signifikanten Unterschied im Ertrag (gesamte Biomasse) zwischen den gedüngten Varianten. Die Erträge der angepassten Varianten erscheinen höher als die der Norm und des Betriebs. Dies wird eher auf die In-Field-Variabilität als auf die Düngeranwendung zurückgeführt (Abb. 17, links). Die Nullparzelle war signifikant ertragsärmer, was zu einer Gesamt-Biomasse von 19 t N ha⁻¹ führte (Abb. 18). Dies deutet auf das potenzielle N-Angebot hin, das hauptsächlich aus dem Boden und der atmosphärischen Deposition stammt.

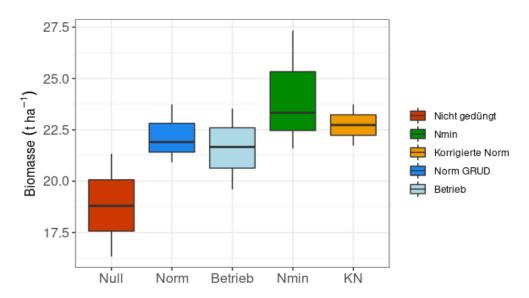


Abbildung 18: Ergebnisse der Ertragsanalyse basierend auf Handproben im Silomais vor der Ernte (t ha⁻¹) pro Variante (n = 3).

Die scheinbare Ausnutzungseffizienz (SAE) war bei allen Varianten hoch und lag durchschnittlich bei 90-180%, was auf den hohen Einfluss der N-Nachlieferung des Bodens hinweist. Betrachtet man die Produktionseffizienz (PE), so scheinen die Varianten mit reduzierter Düngergabe eine effizientere Kornproduktion pro kg ausgebrachtem N zu haben.

Tabelle 4.3: Parameter, die während der Saison und bei der Ernte auf dem Feld erhoben werden: ausgebrachter N-Dünger, Ertrag, N-Abfuhr, scheinbare Ausnutzungseffizienz (SAE) und Produktionseffizienz (PE) für die Berechnung des Wirkungsgrads und Indikatoren für die ökologische Bewertung: N Verlustpotential und N-Auswaschung (nur Sommer berücksichtigt). Die Werte für Output, Effizienz und Umwelt sind als Mittelwert angegeben (n = 3).

Verfahren	Input	0	utput	Ef	fizienz	Umwelt			
	N Düngung	Ertrag	N Abfuhr	SAE	PE	N Verlustpotential	N Auswaschung		
	kg N ha ⁻¹	t ha ⁻¹	kg N ha ⁻¹	%	$kg kg N^{-1}$	kg N ha ⁻¹	kg NO₃-N ha ⁻¹		
Null	0	19	209	-	-	98	3		
N_{min}	104	24	350	115.0	101.1	45	4		
KN	96	24	241	180.9	109.0	3	2		
Norm	110	22	186	98.7	81.0	69	3		
Betrieb	110	22	171	87.6	83.2	81	NA		

Zur Berechnung des potenziellen N-Verlustes und der Nettoveränderungen des N-Pools auf der Grundlage der N-Düngung und der N- Abfuhr aus dem Feld durch die Pflanzen wurde die in den Methoden beschriebene N-Bilanzmethode verwendet (Tab. 4.3). Das Verlustpotenzial umfasst auch den N_{min} bei der Ernte. Die Werte zeigen, dass das Verlustpotenzial bei der Variante Null am höchsten war, während es bei der Variante KN um 3 kg N ha⁻¹ lag Die nicht gedüngte Parzelle hatte das höchste Verlustpotenzial, wegen eines höheren N_{min}-Gehaltes nach der Ernte. Die N-Auswaschung war in allen Verfahren sehr gering < 10 kg Nitrat-N ha⁻¹ (Tab. 4.3), wobei zu bedenken ist, dass in der Vegetationsperiode sehr wenig Wassersickerung stattfindet, und daher auch der Nitrataustrag sehr gering ist. Die Hauptauswaschungen im Ackerbau wird im Winter verbunden mit der erheblichen Grundwasserneubildung von ca. 400 mm erwartet.

5 Ergebnisse - 2023

5.1 **Feldsaison 2023**

In diesem zweiten Jahresbericht sind die vorläufigen Ergebnisse der "Einzelfelder", Streifenversuche und der Demoversuch in Bezug auf die Düngeempfehlungen nach N_{min} und Korrigierte Norm, im Vergleich zur GRUD Norm und/oder Variante Betrieb, dargestellt.

5.1.1 Wetter

Die Wetterbedingungen in der Vegetationsperiode 2023 (Okt-22 bis Sep-23) waren charakterisiert durch eine kumulative Niederschlagsmenge von 966 mm, die leicht unter dem regionalen Jahresmittelwert (1190 mm, bodenmessenetz.ch 2011-2023, Kestenholz) lag, und einer durchschnittlichen Lufttemperatur von 11 °C (Abb. 19). Die Niederschläge waren gut über die Saison verteilt, mit Ausnahme des Monats Februar, der mit nur 15 mm kumulativem Niederschlag der trockenste Monat der Saison war. Der Frühling war durch intensive Niederschläge charakterisiert. Im Juni verursachten einige heftige Stürme in den fast reifen Kulturen wie Winterweizen, Dinkel und Gerste einige Lagerschäden.

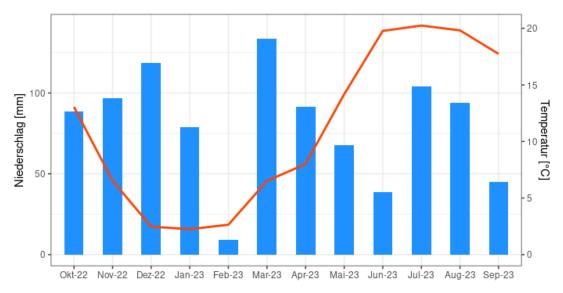


Abbildung 19: Monatliche Niederschlagssumme (mm) und Temperaturmittelwerte (°C) in der Vegetationsperiode 2023 (Okt-22 bis Sep-23) im Gäu. Datenquelle: Wetterstation Kestenholz – <u>Bodenmessnetz (meteotest.ch)</u>.

Abbildung 20: Grundwasserstand (m ü. M.) im Jahr 2023 in der Messstelle Kestenholz. Datenquelle: Amt für Umwelt Kt. Solothurn, Hydrometrie - <u>Hydrometrie - Daten - Umweltdaten - Kanton Solothurn</u>.

Der Grundwasserstand in Kestenholz schwankte zwischen 425 und 427 m ü. M. mit einem Höchststand im März und Juni, einer stetig sinkenden Tendenz gegen Ende des Jahres (Abb. 20).

5.1.2 Allgemeine Darstellung der Düngung und N_{min} für verschiedene Kulturen

Die standortangepasste Empfehlung in verschiedenen Winterweizenparzellen lag in diesem Jahr im Bereich von 100-135 kg N/ ha gegenüber der Norm von 140 kg N/ ha (Abb. 21, a). Die N_{min} -Werte im Frühjahr, die für die Empfehlung der N_{min} -Düngung verwendet wurden, lagen zwischen 20 und 64 kg N/ha (Abb. 21, b).

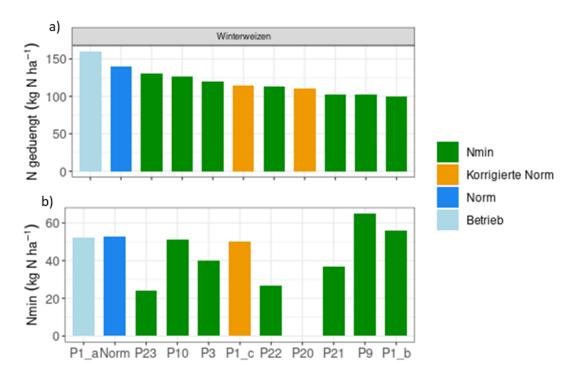


Abbildung 21: Vergleich der Düngeempfehlung (a) nach der N_{min} -Methode, Korrigierte Norm und der Norm/Betrieb in den verschiedenen Parzellen (P1...P_n) für Winterweizen. Der entsprechende N_{min} -Wert ist in der darunterliegenden Grafik (b) dargestellt. Die Farben entsprechen die Düngungsvariante. Die Buchstaben _a, _b, _c bezeichnen verschiedene Varianten in der gleichen Parzelle.

Für Silo- und Körnermais lagen die Düngeempfehlungen in diesem Jahr im Bereich von 55-120 kg N/ ha gegenüber der Norm von 110 kg N/ ha (Abb. 22, a, Seite 24). Die N_{min} -Werte im Frühjahr, die für die Empfehlung der N_{min} -Düngung verwendet wurden, lagen zwischen 50 und 160 kg N/ ha (Abb. 22, b. Seite 24). In diesem Beispiel (Parzelle P24) wird auch gezeigt, wie die Düngeempfehlung zu höheren Werten als der in Norm führen kann, wenn die N_{min} -Werte niedrig sind und der Düngebedarf also tatsächlich grösser ist.

In den Zuckerrüben lagen die Empfehlungen in diesem Jahr im Bereich von 50-75 kg N/ ha gegenüber der Norm von 100 kg N/ ha (Abb. 23, a, Seite 24). Die N_{min} -Werte im Frühjahr, die für die Empfehlung der N_{min} -Düngung verwendet wurden, lagen zwischen 100 und 155 kg N/ha (Abb. 23, c, Seite 24). Im Raps lagen die Empfehlungen zwischen 100 und 130 kg N/ ha (Abb. 23, b, Seite 24) und die N_{min} -Werte im Frühjahr zwischen 34 und 64 kg N / ha (Abb. 23, d, Seite 24).

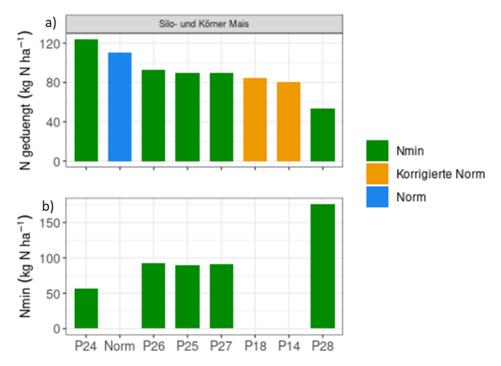


Abbildung 22: Vergleich der Düngeempfehlung (oben) nach der N_{min} -Methode, Korrigierte Norm und der Norm/Betrieb in den verschiedenen Parzellen ($P1...P_n$) für Silo- und Körnermais. Der entsprechende N_{min} -Wert ist in der darunterliegenden Grafik dargestellt. Die Farben entsprechen der Düngungsvariante. Die Buchstaben a, b, c bezeichnen verschiedene Varianten in der gleichen Parzelle.

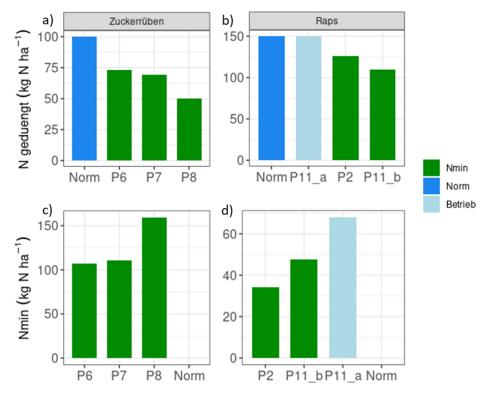


Abbildung 23: Vergleich der Düngeempfehlung in den verschiedenen Parzellen ($P1...P_n$) nach der N_{min} -Methode für Zuckerrüben (links) und Raps (rechts). Der entsprechende N_{min} -Wert ist in der darunterliegenden Grafik dargestellt. Die Farben entsprechen der Düngungsvariante. Die Buchstaben a, b, c bezeichnen verschiedene Varianten in der gleichen Parzelle.

5.1.3 Direkter Vergleich und Demoversuch

Im Jahr 2022 wurden neben dem Haupt-Demoversuch sechs weitere Streifenversuche durchgeführt.

Streifenversuche

Die Streifenversuche hatten eine Kombination aus einer oder mehreren Varianten mit mindestens einer Nullparzelle. Die untersuchten Kulturen waren Raps, Hartweizen und Gerste im Versuchsareal Oensingen (Abb. 24). Zusätzlich wurden Dinkel, Winterweizen und Zuckerrüben bei drei anderen Betrieben untersucht.

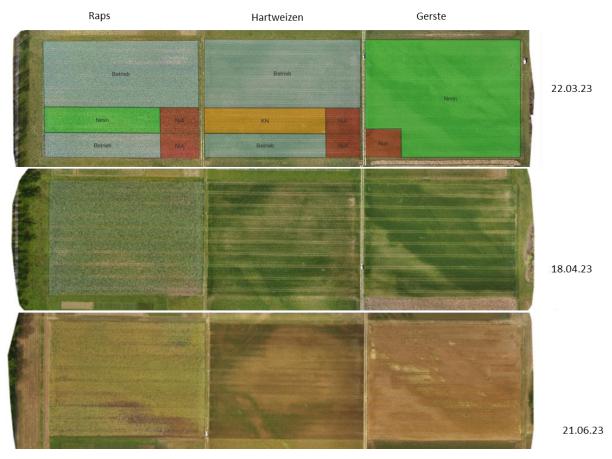


Abbildung 24: Luftaufnahme von 3 Streifenversuchen in Oensingen, in denen N_{min} , korrigierte Norm, Betrieb und Null über die Saison getestet wurden. Die Variabilität im Feld aufgrund der zugrundeliegenden Bodeneigenschaften scheint einen wesentlichen Einfluss auf die Pflanzenentwicklung zu haben

In Tabelle 5.1 sind die In- und Output-Flüsse sowie die N_{min}-Messungen der verschiedenen Betriebe (B2-B5) und Düngevarianten gezeigt. Der Input an ausgebrachtem N-Dünger war in den standortangepassten Varianten im Allgemeinen geringer als in der Norm und im Betrieb (wenn der Vergleich möglich war). Die einzige Ausnahme war Dinkel (eigentlich Urdinkel), wo die betriebliche Ausbringung niedriger war als die Norm. Im Allgemeinen wird Dinkel in dieser Region viel weniger gedüngt als von der aktuellen Düngeempfehlung vorgeschlagen und dies legt daher eine Überarbeitung der Düngeempfehlung nahe. Der nach der Ernte gemessene N_{min}-Wert war höher als die Werte im Frühjahr, ein Trend, der auch bei anderen Projekten mit ähnlichen Versuchen beobachtet wurde (z. B. Maisnet). Die Werte wiesen auch eine gewisse Variabilität zwischen den Varianten auf demselben Feld auf.

Bei einer allgemeinen Beschreibung der Output ist festzustellen, dass in fast allen Fällen die Nullparzellen, also der Verzicht auf Düngemittel, einen signifikanten Unterschied im Ertrag und in der Qualität der Ernte bewirkten. Die einzige Ausnahme ist Raps in B2, der keine signifikanten Unterschiede aufwies. Es sollte jedoch hinzugefügt werden, dass das gesamte Feld einschliesslich der Nullparzelle im Herbst ca. 30 kg N/ ha erhielt. Bei Hartweizen schien die Verringerung der Düngemittelmenge zu einer erheblichen Ertragsminderung zu führen. Diese Kultur war jedoch weder für die Region noch für die Schweiz typisch, was darauf hindeutet, dass die Empfehlung wahrscheinlich nicht auf die tatsächlichen Bedürfnisse der Kultur zugeschnitten war.

Tabelle 5.1: Parameter, die während der Saison 2023 und bei der Ernte auf dem Feld erhoben werden: ausgebrachter N-Dünger, Ertrag, N-Abfuhr. Die Werte für Output, Effizienz und Umwelt sind als Mittelwert angegeben (n = 3).

Betrieb	Kultur	Variante	Input	N _{mir}	1	Outp	ut
			N Düngung	Frühjahr	Ernte	Ertrag	N-Abfuhr
			kg N ha ⁻¹	kg N ha ⁻¹	kg N ha ⁻¹	t ha ⁻¹	kg N ha ⁻¹
B2	RA	Null	0	86	195	5.37	205
B2	RA	N_{min}	140	48	128	5.20	195
B2	RA	Betrieb	150	68	150	5.22	205
B2	HW	Null	0	n.a.	n.a.	4.80	126
B2	HW	KN	115	n.a.	n.a.	6.59	250
B2	HW	Betrieb	128	n.a.	n.a.	8.22	243
B2	GE	Null	0	26	n.a.	5.46	93
B2	GE	N_{min}	110	26	223	6.45	135
В3	DK	Null	0	41	92	3.61	110
В3	DK	N _{min}	61.5	39	96	4.07	148
В3	DK	Betrieb	50.5	50	75	4.03	190
D.4	14/14/	A. II	0			6.45	407
B4	WW	Null	0	n.a.	n.a.	6.15	197
B4	WW	KN	110	n.a.	n.a.	6.23	204
B4	WW	Betrieb	140	n.a.	n.a.	6.67	223
B5	ZR	Null	0	111	n.a.	75.34	177
B5	ZR	N _{min}	69	111	n.a.	79.00	210

In Tabelle 5.2 sind die Indikatoren für die Effizienz sowie die Umwelt- und Qualitätsbewertung aufgeführt. Die Effizienzwerte zeigen im Allgemeinen den starken Einfluss einer hohen Mineralisierung und N-Nachlieferung, die sich in relativ hohen Erträgen in den Nullparzellen manifestierte. Aufgrund der hohen N_{min}-Werte bei der Ernte sind die Werte für das N-Verlustpotenzial im Allgemeinen recht hoch. In Bezug auf die Qualität gibt es dagegen nur wenige, nicht signifikante Unterschiede zwischen den gedüngten Varianten.

Tabelle 5.2: Indikatoren für scheinbare Ausnutzungseffizienz (SAE) und Produktionseffizienz (PE, kg Körnertrag kg N^{-1}) für die Berechnung des Wirkungsgrads und Indikatoren für die ökologische und Bewertung und Qualität: N-Verlustpotential und N Saldo, sowie Protein- bzw. Zuckergehalt. Die Werte für Effizienz, Umwelt und Qualität sind als Mittelwert angegeben (n = 3).

Betrieb	Kultur	Variante	Ef	fizienz	Umwelt		Qualität
			SAE	PE	N Verlustpotential	N Saldo	Proteingehalt
			%	kg* kg N ⁻¹	kg N ha ⁻¹	kg N ha ⁻¹	%
B2	RA	Null	-	-	195	-205	n.a.
B2	RA	N_{min}	-7.1	37.2	278	-55	n.a.
B2	RA	Betrieb	0.1	34.8	299	-55	n.a.
B2	HW	Null	-	-	n.a.	-126	10.5
B2	HW	KN	107.9	57.3	n.a.	-135	14.5
B2	HW	Betrieb	91.2	64.2	n.a.	-115	12.9
B2	GE	Null	-	-	n.a.	-93	7.6
B2	GE	N_{min}	99.6	58.6	403	-25	9.3
В3	DK	Null	-	-	187	-110	10.8
В3	DK	N_{min}	61.3	66.1	214	-86	11.7
В3	DK	Betrieb	157.9	79.7	141	-139	12.8
B4	WW	Null	-	-	n.a.	-197	11.7
B4	WW	KN	5.6	56.6	n.a.	-94	12.5
B4	ww	Betrieb	18.5	47.6	n.a.	-83	12.7
							Zuckergehalt
							%
B5	ZR	Null	-	-	n.a.	-177	20.6
B5	ZR	N _{min}	48.6	1144.9	n.a.	-141	19.5

^{*}kg Ertrag (z.B. Körner oder Rüben)

Demoversuch

Die Parzelle wurde, wie im 2022, in 4 Unterparzellen unterteilt: die drei GRUD-Methoden (Norm, N_{min} und Korrigierte Norm) und eine Nullparzelle (Abb. 25, a). Zusätzlich wurde ein Teil als Standard vom Betrieb gedüngt. Das Feld wurde mit **Winterweizen** für Saatgut am 15.10.2022 gesät und am 18.07.2023 gedroschen. Für die Analyse wurden Handproben vor der Ernte genommen.

Abbildung 25: Luftbild von Demoversuch mit den 5 Parzellen: Norm, Nmin, Korrigierte Norm (KN), Betrieb und Null (a) über die Season in März (a), April (b), Mai (c) und Juni (d).

Der Düngereinsatz wurde bei der N_{min} - und Korrigierten Norm-Variante um 30 beziehungsweise 20% der Norm für Winterweizen reduziert, ohne einen signifikanten Unterschied im Ertrag (gesamte Biomasse) zwischen den gedüngten Varianten (Tabelle 5.1). Der Ertrag bei der N_{min} -Variante scheint etwas niedriger zu sein. Dies ist auch darauf zurückzuführen, dass die vom Labor erhaltenen N_{min} -Gehalte leider einen Fehler aufwiesen und die Berechnung der Düngebedarf auf der Grundlage von Werten durchgeführt wurde, die um den Faktor 10 höher waren als die tatsächlichen Werte. Aus diesem Grund ist es möglich, dass die Reduktion bei der N_{min} -Variante über der optimalen Grenze lag. Bei der Variante mit korr. Norm war dieses Muster jedoch nicht zu beobachten.

Die Nullparzelle war signifikant ertragsärmer, was zu einer Gesamt-Biomasse von 4.8 t N ha⁻¹ führte. Dies deutet auf das potenzielle N-Angebot hin, das hauptsächlich aus dem Boden und der atmosphärischen Deposition stammt.

Tabelle 5.3: Parameter, die während der Saison und bei der Ernte auf dem Feld erhoben werden: ausgebrachter N-Dünger, Ertrag, N-Abfuhr und N-Auswaschung. Die Werte für Output, Effizienz und Umwelt sind als Mittelwert angegeben (n = 3).

	Input		N_{min}			Outp	out
	N Düngung	Frühjahr	Ernte	Herbst	Ertrag	N-Abfuhr	N-Auswaschung
	kg N ha ⁻¹	t ha ⁻¹	kg N ha ⁻¹	kg N ha ⁻¹			
Null	0	60	62	66	4.77	101	30
Norm	140	53	47	76	7.11	224	46
N_{min}	95	56	47	65	6.80	180	98
KN	110	50	62	105	7.87	229	57
Betrieb	155	53	77	79	7.04	239	NA

Die Scheinbare Ausnutzungseffizienz (SAE) war bei allen Varianten hoch und lag durchschnittlich bei 83-116%, was auf den hohen Einfluss der N-Nachlieferung des Bodens hinweist. Betrachtet man die Produktionseffizienz (PE), so scheinen die Varianten mit reduziertem Dünger eine effizientere Kornproduktion pro kg ausgebrachtem N zu haben.

Tabelle 5.4: Parameter, die während der Saison und bei der Ernte auf dem Feld erhoben werden: scheinbare Ausnutzungseffizienz (SAE) und Produktionseffizienz (PE, kg Körnertrag kg N^{-1}) für die Berechnung des Wirkungsgrads und Indikatoren für die ökologische Bewertung: N-Verlustpotential und N Saldo (ohne Auswaschung, die Analyse sind noch im Lauf). Die Werte für Effizienz, Umwelt und Ökonomie sind als Mittelwert angegeben (n = 3).

		Effizienz	Umwelt		Ökonom	ie
	SAE	PE	N Verlustpotential	N Saldo	Protein Gehalt	Saldo
	%	kg Ertrag kg N ⁻¹	kg N ha ⁻¹	kg N ha ⁻¹	%	CHF ha ⁻¹
Null	-	-	62	-101	9.8	2481
Norm	87.7	50.8	65	-84	11.3	3641
N_{min}	83.0	71.6	64	-85	12.5	3497
KN	116.2	71.6	44	-119	13.4	4047
Betrieb	88.7	45.4	94	-84	14.2	3596

Zur Berechnung des potenziellen N-Verlustes und der Nettoveränderungen des N-Pools auf der Grundlage der N-Düngung und der N- Abfuhr aus dem Feld durch die Pflanzen wurde die in den Methoden beschriebene N-Bilanzmethode verwendet (Tab. 5.4). Das N-Verlustpotenzial umfasst auch den N_{min} bei der Ernte. Die Werte zeigen, dass das Verlustpotenzial relativ hoch war (44 bis 94 kg N ha⁻¹). Der Proteingehalt lag nur in zwei Varianten (Null und Norm) unter dem Grenzwert von 12.5 % für Qualität Zuschlag/Abzug im Brotweizen. In diesem Fall wurde der Weizen jedoch nicht für die Brotherstellung, sondern als Saatgut verkauft. Die wirtschaftlichen Auswirkungen sind daher in den Saldos, in denen die Unterschiede nicht signifikant sind, geringer.

6 Literaturverzeichnis

- AfU Solothurn, 2022. Das Nitratprojekt Niederbipp-Gäu-Olten Amt für Umwelt Kanton Solothurn
- Argento, F., Liebisch, F., Anken, T., Walter, A. and El Benni, N. 2022. Investigating two solutions to balance revenues and N surplus in Swiss winter wheat. Agricultural Systems 201, 103451. https://doi.org/10.1016/j.agsy.2022.103451.
- **Bürge, D. und Agroscope. 2020**. Schweizerische Referenzmethoden der Forschungsanstalten Agroscope. Version 1.2. Agroscope Reckenholz, Zurich (Switzerland).
- **Frick, H. 2022**. Nitrate leaching from animal manure Insights from on-farm and greenhouse studies using 15N labelled cattle slurry (PhD thesis). ETH Zurich, Zurich (Switzerland). https://doi.org/10.3929/ethz-b-000545812.
- Grossrieder J., Ringger C., Argento F., Grandgirard R., Anken T. und Liebisch F. 2022. Stickstoff-Einsatz dank standortangepasster Düngung effizienter. Agrarforschung Schweiz 13, 103–113. Stickstoff-Einsatz dank standortangepasster Düngung effizienter Agrarforschung Schweiz
- Maltas, A., Charles, R., Pellet, D., Dupuis, B., Levy, L., Baux, A., Jeangros, B. and Sinaj, S. 2015. Evaluation zweier Methoden für eine optimale Stickstoffdüngung im Ackerbau. Agrarforschung Schweiz 6(3), pp. 84-93. https://www.agrarforschungschweiz.ch/wpcontent/uploads/2019/12/2015_03_2049.pdf
- **Sinaj, S., Richner, W., 2017**. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8(6).

7 Anhang

7.1 Preisliste für Düngung bei Landor im Dezember 2022.

Preisliste 1. bis 31. Dezember 2022

Name	Vomame
Strasse	Plz, Ort
Telefon	Datum

Preise: Alle Preis inkl. 2.5% MwSt

Konditionen: Anbruchpalette + Fr. 2.50 / 100 kg

1 - 7 Paletten Basispreis + Lieferpauschale Fr. 60.00

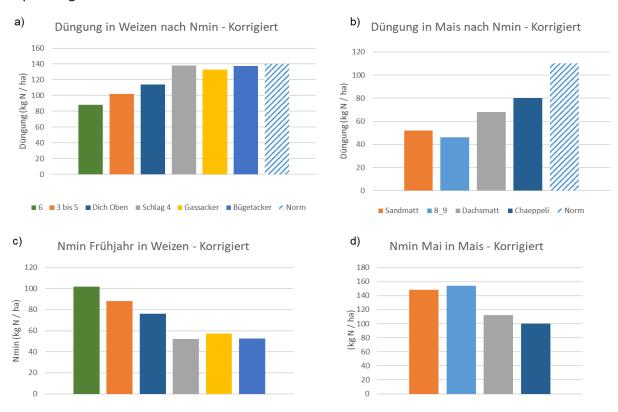
8 Paletten Basispreis

ab 12 Paletten Rabatt Fr. 1.00 / 100 kg ab 17 Paletten Rabatt Fr. 1.50 / 100 kg ab 23 Paletten Rabatt Fr. 2.00 / 100 kg

Düngersortiment Landor												
	N	Р	K	Mg	S	Ca	Na	Bor	Mn	Preis /	Beste	llung
										100 kg	gesackt	Big-Bag
Ammonsalpeter ohne Mg	27					9				92.20		
Ammonsalpeter	27			2,5		5				93.30		
MG-Ammonsalpeter	24			5	6					102.00		
Bor-Ammonsalpeter	26				14					105.10		
Kalk-Ammon+Mg	20			4,5		13				93.30		
Sulfamid	30			3	10					103.00		
Ammonsulfat gran (wasserlöslich)	21				24					93.50		
Harnstoff granuliert	46									107.10		
Harnstoff geprillt	46									144.00		
Landor 20.10.10	20	10	10		3	5				108.60		
Nitroplus mit Natrium	20	5	8	2	6		3			103.50		
Suplesan	20	8	8	2	8		2	0.1	0.2	110.70		
Landor 15.15.15	15	15	15		2	5				109.70		
Landor 13.13.21	13	13	21		2	5				111.20		
Rübendünger (Carodor)	5	9	27	4	6	4		0,3	0,2	115.30		
Kartoffeldünger (Patador)	5	9	30	2	8	4		0,1	0,1	125.60		
Polyvalent (Maisdünger)	5	10	28	2	6	4		0,1		109.20		
Rapsdünger (Colzador)	5	12	24	2	5	6		0,2		108.60		
Geldor	8	12	20	1,8	8	5				105.10		
ENTEC perfekt	14	7	17	1.2	9					Ak	tuell kein An	gebot
Terbona (chlorfrei)	15	5	20	1,2	8	2				115.80		
No-Till 20.20.0	20	20			2					121.50		
Landor Nitrophos rapide 20.10.0	20	10		3	8					105.60		
DAP (Diammonphosphat)	18	46								128.60		
PK-Bor		13	26	3	6	9		0.2		104.60		
Landor 0.20.30		20	30		1,5	8				108.50		
Patentkali (Kalimagnesia)			30	6	17					93.80		
Kali 60			60							109.20		

Stallhygiene			
Desical	49.20		
Kalkstrohmischung lose		auf Anfrag	е

Herzlichen Dank für Ihre Bestellung.


LANDI Schleinikon, Dorfstrasse 18, 8165 Schleinikon Tel. 058 476 54 15 / Fax 058 476 54 11 agro.schleinikon@landisurb.ch
LANDI Klingnau, Zelgli 6, 5313 Klingnau
Tel. 058 476 54 35 / Fax 058 476 54 31 agro.klingnau@landisurb.ch
LANDI Weiach, Kaiserstuhlerstr. 44, 8187 Weiach
Tel. 058 476 54 40 / Fax 058 476 54 41 agro.schleinikon@landisurb.ch

7.2 Grundwasserstand im Gäu (Kestenholz) im 2022

Grundv	vass	erstand	Li	mnigra	ph Kest	enholz	- Keste	enholz				SO 6	23/237/	005
			Ко	ordinaten	2 623 810	/ 1 237 680)	OK Terr	ain 446.6	3 müM	Absti	ichpunkt	447.585 mi	üМ
2022		Jan	Feb	Mar	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	
2022	1 2 3 4 5	427.45 - 427.47 427.49 427.52 427.55	427.94 427.94 427.94 427.94 427.94	428.09 - 428.11 428.12 428.13 428.15	428.12 + 428.11 428.09 428.09 428.08	427.94 + 427.93 427.93 427.92 427.92	427.74 + 427.73 427.72 427.71 427.70	427.43 + 427.42 427.42 427.41 427.40	427.13 + 427.12 427.11 427.10 427.08	426.78 + 426.77 426.76 426.75 426.74	426.49 + 426.49 426.48 426.47 426.47	426.29 + 426.28 426.27 426.27 426.26	426.12 + 426.12 426.11 426.11 426.10	1 2 3 4 5
Tagesmittel	6 7 8 9 10	427.57 427.59 427.61 427.63 427.65	427.94 427.93 427.93 - 427.93 427.94	428.16 428.16 428.17 428.18 428.18	428.07 428.07 428.06 428.05 428.04	427.91 427.91 427.90 427.90 427.89	427.69 427.68 427.67 427.66 427.65	427.39 427.38 427.37 427.36 427.35	427.07 427.06 427.05 427.04 427.03	426.73 426.72 426.71 426.70 426.69	426.46 426.45 426.45 426.45 426.44	426.25 426.25 426.24 426.23 426.23	426.10 426.10 426.09 426.09 426.08	6 7 8 9 10
	11 12 13 14 15	427.66 427.68 427.70 427.72 427.75	427.94 427.94 427.95 427.95 427.96	428.19 428.19 428.20 + 428.19 428.19	428.03 428.03 428.02 428.02 428.01	427.89 427.88 427.88 427.87 427.87	427.64 427.63 427.62 427.61 427.60	427.35 427.34 427.33 427.32 427.31	427.02 427.01 426.99 426.98 426.97	426.68 426.67 426.66 426.65 426.64	426.43 426.43 426.42 426.41 426.41	426.22 426.21 426.21 426.20 426.20	426.08 426.07 426.07 426.06 426.06	11 12 13 14 15
müM	16 17 18 19 20	427.77 427.79 427.81 427.84 427.86	427.96 427.97 427.98 427.98 427.99	428.20 428.19 428.19 428.18 428.18	428.00 428.00 428.00 428.00 427.99	427.86 427.85 427.85 427.84 427.83	427.59 427.58 427.57 427.56 427.55	427.30 427.29 427.28 427.27 427.26	426.96 426.95 426.94 426.92 426.91	426.63 426.62 426.61 426.60 426.59	426.40 426.39 426.38 426.38 426.37	426.19 426.18 426.18 426.17 426.17	426.05 426.05 426.04 426.04 426.04	16 17 18 19 20
+ Maximum	21 22 23 24 25	427.87 427.89 427.90 427.91 427.92	428.00 428.00 428.01 428.03 428.04	428.18 428.17 428.17 428.16 428.16	427.99 427.99 427.98 427.98 427.97	427.83 427.82 427.82 427.81 427.80	427.54 427.53 427.52 427.50 427.49	427.25 427.24 427.22 427.21 427.20	426.90 426.89 426.88 426.87 426.86	426.58 426.57 426.56 426.56 426.55	426.36 426.36 426.35 426.34 426.33	426.16 426.16 426.15 426.15 426.14	426.03 426.03 426.02 426.02 426.01	21 22 23 24 25
- Minimum	26 27 28 29 30 31	427.93 427.93 427.93 427.94 427.94 427.95 +	428.05 428.06 428.08 +	428.15 428.14 428.14 428.14 428.13 428.13	427.96 427.95 427.95 427.94 427.94 =	427.79 427.78 427.77 427.77 427.76 427.75 -	427.48 427.47 427.46 427.45 427.44 -	427.19 427.18 427.17 427.16 427.15 427.14 -	426.85 426.84 426.83 426.81 426.80 426.79 =	426.54 426.53 426.52 426.51 426.50 =	426.33 426.32 426.31 426.31 426.30 426.29 =	426.14 426.14 426.13 426.13 426.12 -	426.01 426.01 - 426.02 426.03 426.04 426.06	26 27 28 29 30 31
Monatsmittel		427.75	427.97	428.16 +	428.02	427.85	427.59	427.29	426.96	426.64	426.40	426.20	426.06 -	müM
Maximum (Spitze) Datum		427.95 31.	428.08 28.	428.20 + 13.	428.12 1.	427.94 1.	427.74 1.	427.44 1.	427.13 1.	426.79 1.	426.50 1.	426.29 1.	426.12 - 1.	müM
Monatsamplitude		0.51 +	0.16	0.12	0.19	0.20	0.30	0.31	0.34	0.29	0.21	0.17	0.11 -	m
Jahr		Mittel 427.2	4		Max (Spitze)	428.20 (13.3.)	l .	Min (Spitze)	426.01 (26.12.))	Jahresamplitu	de (Spitze) 2	.19	
	429.2	Ganglinie der Ta	31 50	9 9	0 12			reicht oder übers		13 27	3 30	← Jahres 04 33		65 Tage
	428.4													1
müM	427.6													
	426.8													
	426.0													
		I	II	III	IV	V	VI	VII	VIII	IX	Х	XI	XII	
Periode						1	987 - 202	2					(36 Ja	ahre)
Monatsmittel		427.36	427.65	427.95	428.11 +	428.07	427.96	427.81	427.62	427.38	427.18	427.02 -	427.02 -	müM
Maximum (Spitze) Jahr		429.76 2003	430.25 1995	430.82 1988	431.18 + 1988	430.99 1988	430.48 1988	430.16 1988	429.69 1988	429.55 2007	429.47 2007	429.13 - 2007	429.24 2002	müM
Minimum (Spitze) Jahr		424.68 2012	425.20 2006	425.40 2006	425.90 + 2011	425.64 2011	425.42 2011	425.21 2011	425.02 2011	424.85 2011	424.62 2011	424.44 2011	424.35 = 2011	müM
Monatsamplitude (Jahr	Max)	1.73 + 2018	1.35 2021	1.51 2001	1.51 2006	0.85 2015	1.16 2016	1.18 2021	0.47 1988	0.42 - 2006	0.60 2006	1.29 2002	1.39 2012	m
Periode		Mittel 427.5	9		Max (Spitze)	431.18 (16.4.1	988)	Min (Spitze)	424.35 (16.12.	2011)	Periodenampl	itude (Spitze)	6.83	
Da		ing der let Ganglinie der M		ahre		Jahresmittel		~	Periodenmi	ittel		± Jahresextre	emwerte	
	432.0													
	430.0						بالر					* ~		
müM	430.0 428.0			Je-/*-	-*	<u> </u>		~*~			ħ.	/	J*~~	87 - 22
müM		_M_				**************************************		~*************************************		~ C**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, p			87 - 22
müM	428.0	*·	-	Jersey 6,				~*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			J***	87 - 22

7.3 Korrigierte N_{min} Werte mit Faktor x2 und berechnete Empfehlungen

Bei Weizen hätte sich die korrigierte Empfehlung im Vergleich zu den empfohlenen Mengen verändert (5-40% weniger als die Norm). Bei Mais (sowohl Silo als auch Körner) lagen die berichtigten Empfehlungen ebenfalls um ca. 30-60% unter der Norm.

7.4 **Tabelle 8/9 - GRUD 2017**

Tabelle 9 | Referenzertrag, Nährstoffentzug und Düngungsnormen bezüglich N, P, K und Mg für die Ackerkulturen. Die Düngungsnormen für P, K und Mg berücksichtigen das Nährstoffaneignungsvermögen der Kulturen (Tabelle 21). Anmerkungen: Als Grundlage für die Berechnung dient der Entzug von P, K und Mg durch die Ernte und die Rückstände. Der gesamte Nährstoffentzug wurde als Summe der Nährstoffentzüge durch die Ernteprodukte und -rückstände berechnet.

				toffentzug Iem Refe			Düngun	gsnorm		
	Referenz- ertrag ¹		P K (P ₂ O ₅) (K ₂ O) Mg					P (P ₂ O ₅)	K (K ₂ O)	Mg
Kultur	dt/ha	Produkt		kg/	ha ha			kg	/ha	
	60	Körner	121	21 (49)	22 (26)	7				
Winterweizen (Brot- und	70	Stroh	22	6 (13)	62 (75)	5				
Biskuitweizen)	total		143	27 (63)	84 (101)	12	140	27 (63)	67 (81)	15
	75	Körner	130	27 (62)	27 (32)	9				
Futterweizen	75	Stroh	21	6 (14)	66 (80)	5				
	total		151	33 (76)	93 (113)	14	140	33 (76)	74 (90)	15

	50	Körner	101	18 (41)	18 (22)	6				
Sommerweizen	60	Stroh	19	5 (11)	53 (64)	4				
	total		120	23 (52)	71 (86)	10	120	23 (52)	71 (86)	10
	60	Körner	89	22 (50)	27 (32)	7				
Wintergerste	60	Stroh	26	6 (13)	80 (96)	4				
	total		115	28 (64)	107 (128)	11	110	28 (64)	86 (103)	15
	55	Körner	81	20 (46)	25 (30)	6				
Sommergerste	55	Stroh	24	5 (12)	73 (88)	3				
	total		105	25 (58)	98 (118)	9	90	25 (58)	98 (118)	10
	55	Körner	88	19 (44)	23 (28)	6				
Winterhafer	70	Stroh	35	8 (19)	122 (147)	6				
	total		123	27 (63)	145 (175)	12	90	27 (63)	116 (140)	15
	55	Körner	91	19 (44)	23 (28)	6				
Sommerhafer	70	Stroh	29	8 (19)	122 (147)	6				
	total		120	27 (63)	145 (175)	12	90	27 (63)	145 (175)	15
	55	Körner	72	19 (44)	23 (28)	6				
Winterroggen	70	Stroh	21	6 (14)	70 (84)	7				
	total		93	25 (58)	93 (112)	13	90	25 (58)	74 (89)	15

Tabelle 9 (Fortsetzung)												
				offentzug lem Refei				Düngun	ıgsnorm			
	Referenz- ertrag ¹		N	P (P ₂ O ₅)	K (K ₂ O)	Mg	N	P (P ₂ O ₅)	K (K ₂ O)	Mg		
Kultur	dt/ha	Produkt		kg/	ha			kg	/ha			
	65	Körner	85	23 (52)	27 (33)	7						
Winterroggen (Hybridsorten)	75	Stroh	23	7 (15)	75 (90)	8						
	total		108	30 (67)	102 (123)	15	90	30 (67)	82 (98)	15		
	45	Körner	72	16 (36)	19 (23)	5						
Dinkel	70	Stroh	35	8 (18)	70 (84)	7						
	total		107	24 (54)	89 (107)	12	100	24 (54)	71 (85)	15		
	60	Körner	96	19 (43)	24 (29)	5						
Wintertriticale	75	Stroh	25	5 (11)	112 (135)	5						

	total		121	24 (54)	136 (164)	10	110	24 (54)	109 (132)	10
	55	Körner	88	17 (40)	22 (27)	5				
Sommertriticale	70	Stroh	23	4 (10)	105 (126)	4				
	total		111	21 (49)	127 (153)	9	100	21 (49)	127 (153)	10
	25	Körner	55	9 (20)	11 (13)	4				
Emmer, Einkorn	45	Stroh	18	6 (14)	34 (41)	3				
	total		73	15 (34)	45 (53)	7	30	15 (34)	36 (42)	10
	35	Körner	58	10 (23)	8 (10)	4				
Hirse	45	Stroh	75	11 (25)	85 (102)	11				
	total		133	21 (48)	93 (112)	15	70	22 (51)	95 (114)	12
	100	Körner	130	26 (59)	33 (40)	9				
Körnermais	110	Stroh	80	12 (26)	160 (191)	14				
	total		210	38 (85)	193 (231)	23	110	46 (103)	195 (235)	25
Silomais	185 ²	Ganzpflanze	218	38 (89)	200 (241)	24				
Siloniais	total		218	38 (89)	200 (241)	24	110	46 (103)	195 (235)	25
Grünmais	60 ²	Ganzpflanze	114	17 (39)	134 (162)	6				
Gruillidis	total		114	17 (39)	134 (162)	6	70	17 (39)	134 (162)	10

Tabelle 9 (Fortsetzung)										
				toffentzi auf dem				Düngu	ngsnorm	1
	Referenz - ertrag		N	P (P ₂ O ₅)	K (K ₂ O)	Mg	N	P (P ₂ O ₅)	K (K ₂ O)	Mg
Kultur	dt/ha	Produkt		k; h	g/ a				g/ a	
Kartoffeln (Speisekartoffeln und	450	Knollen	135	26 (59)	202 (243)	9				
Kartoffeln für die technische Verarbeitung)	200	Kraut	28	4 (10)	108 (130)	8				
Gruppe 1 ^a Gruppe 2 ^b Gruppe 3 ^c	total		163	30 (69)	310 (373)	17	80 ^a 120 ^b 160 ^c	36 (82)	372 (448)	20
Kartoffeln	300	Knollen	69	20 (45)	125 (150)	6				
(Frühkartoffeln) Gruppe 1 ^a	200	Kraut	66	6 (14)	116 (140)	12				
Gruppe3 ^c	total		135	26 (59)	241 (290)	18	70 ^a 110 ^b 150 ^c	31 (71)	289 (348)	20
	250	Knollen	58	17 (38)	104 (125)	5				

Kartoffeln (Pflanzkartoffel n) Gruppe 1 ^a	200	Kraut	66	6 (14)	116 (140)	12				
Gruppe 3 ^c	total		124	23 (52)	220 (265)	17	60 ^a 100 ^b 140 ^c	28 (62)	264 (318)	20
	900	Rüben	108	24 (54)	149 (180)	27				
Zuckerrüben	475	Kraut/Köpfe	157	17 (38)	248 (299)	43				
	total		265	41 (92)	397 (479)	70	100	40 (92)	318 (383)	70
	175 ²	Rüben	193	38 (88)	261 (315)	23				
Futterrüben	400	Kraut	140	14 (32)	232 (280)	36				
	total		333	52 (120)	493 (595)	59	100	52 (120)	394 (476)	60
	35	Hauptproduk t	102	22 (51)	25 (30)	8				
Winterraps	90	Nebenprodu kt	54	6 (14)	142 (171)	4				
	total		156	28 (64)	167 (201)	12	150	28 (69)	167 (202)	15
	25	Hauptproduk t	65	16 (37)	17 (21)	7				
Sommerraps	45	Nebenprodu kt	32	4 (9)	46 (56)	7				
	total		97	20 (46)	63 (77)	14	120	20 (46)	63 (77)	15

Tabelle 9 (Fortsetzung) Nährstoffentzug basierend auf													
			Nährs (toffentzu Iem Refe	g basiere renzertra	end auf g		Düngur	ıgsnorm				
	Referenz - ertrag ¹		N	P (P ₂ O ₅)	K (K ₂ O)	Mg	N	P (P ₂ O ₅)	K (K ₂ O)	Mg			
Kultur	dt/ha	Produkt		kg	/ha			kg	/ha				
	30	Körner	95	14 (33)	21 (25)	9							
Sonnenblume	60	Stroh	54	7 (16)	306 (369)	45							
	total		149	21 (49)	327 (394)	54	60	21 (49)	327 (394)	55			
	13	Körner	60	14 (33)	12 (14)	7							
Ölhanf	60	Stroh	54	10 (23)	70 (84)	9							
	total		114	24 (56)	82 (98)	16	60	24 (56)	82 (98)	20			
	100	Hauptprodukt	30	13 (30)	75 (90)	5							
Faserhanf ³	40	Nebenprodukt	110	26 (60)	91 (110)	20							
	total		140	39 (90)	166 (200)	25	100	39 (90)	166 (200)	25			
	20	Körner	109	10 (24)	16 (19)	1							

Öllein	25	Stroh	15	6 (13)	37 (45)	2				
Ollelli	total		124	16 (37)	53 (64)	3	80	16 (37)	53 (64)	5
	45	Körner	45	14 (32)	75 (90)	9				
Faserlein	15	Stroh	82	8 (18)	12 (14)	1				
	total		127	22 (50)	87 (104)	10	60	22 (50)	87 (104)	10
Chinaschilf	200 ²	Ganzpflanze	42	9 (20)	93 (112)	6				
Cilliascilli	total		42	9 (20)	93 (112)	6	30	9 (20)	93 (112)	10
Kenaf	50 ²	Ganzpflanze	100	26 (60)	66 (80)	10				
Kellal	total		100	26 (60)	66 (80)	10	70	26 (60)	66 (80)	10
	40	Körner	140	17 (39)	40 (48)	5				
Eiweisserbsen	50	Stroh	100	17 (39)	66 (80)	11				
	total		240	34 (78)	106 (128)	16	0	34 (78)	127 (154)	20
	40	Körner	160	24 (56)	46 (56)	10				
Ackerbohnen	45	Stroh	135	7 (16)	75 (90)	15				
	total		295	31 (72)	121 (146)	25	0	31 (72)	145 (175)	25

Tabelle 9 (Fortsetzung) Nährstoffentzug basierend auf												
			Nährs	toffentzu dem Refe	g basiere renzertra	end auf ig		Düngur	ngsnorm			
	Referenz- ertrag ¹		N	P (P ₂ O ₅)	K (K ₂ O)	Mg	N	P (P ₂ O ₅)	K (K ₂ O)	Mg		
Kultur	dt/ha	Produkt		kg	/ha			kg	/ha			
	30	Körner	180	15 (35)	48 (58)	6						
Sojabohne	30	Stroh	105	15 (35)	53 (64)	9						
	total		285	30 (70)	101 (122)	15	0	30 (71)	121 (147)	15		
	30	Körner	165	13 (30)	34 (41)	6						
Süsslupine	30	Stroh	105	5 (12)	50 (60)	12						
	total		270	18 (42)	84 (101)	18	0	18 (42)	101 (121)	20		
Gründünger	35 ²	Ganzpflanze	153	16 (37)	102 (123)	9						
(Leguminosen)	total		153	16 (37)	102 (123)	9	0	0 (0)	0 (0)	0		
Gründünger	35 ²	Ganzpflanze	85	14 (32)	143 (173)	8						
(Nicht-Leguminosen)	total		85	14 (32)	143 (173)	8	0	0 (0)	0 (0)	0		
	25 ²	Ganzpflanze	70	10 (24)	75 (90)	6						

Zwischenfrüchte (pro Nutzung)	total		70	10 (24)	75 (90)	6	30	10 (24)	55 (67)	10
	25 ²	Blätter	75	8 (18)	104 (125)	7				
Tabak Burley	30 ²	Stängel	69	10 (22)	112 (135)	6				
	total		144	18 (40)	216 (260)	13	170	18 (40)	216 (260)	15
	25 ²	Blätter	63	6 (14)	99 (119)	5				
Tabak Virginie	25 ²	Stängel	25	9 (21)	104 (125)	10				
	total		88	15 (35)	203 (244)	15	30	15 (35)	203 (244)	15
	60	Körner	66	18 (41)	27 (32)	5				
Reis	60	Stroh	39	8 (18)	102 (123)	11				
	total		105	26 (60)	129 (155)	16	110	26 (60)	120 (145)	10